打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
量子力学的本质:唯物的科学

还是从最开始讲起吧。请看这样一个实验。将一颗石头扔向平静的水面,水面将以这颗石头为中心产生一圈一圈向外扩散的波纹。如果我们同时扔两颗大小相同的石头,那么可以想见,这两颗石头所产生的波纹会相互交汇,一些地方的波纹更强烈,一些地方则减弱,这就是我们最初认识到的干涉现象。


不久之后,我们又通过了一个经典实验证实了光也是一种波——电磁波。(注意:光具有波粒二向性,但光本质是波)


这是实验装置。可以得到如下的干涉条纹图样。


20世纪初,爱因斯坦发现了光电效应,证明了光同时也是一种粒子——也就是我们常说的光的波粒二象性。于是我们会开始想,其他实实在在的物质会不会也表现出这样的波粒二象性呢?
于是我们把杨氏双缝干涉实验稍微改一改,把发射光子的激光器改成一个发射电子的装置。同样我们也得到了这样的干涉图样。由此我们发现,原来在微观世界,物质并不是固定不变的,而是具有波的性质——概率。由此经典物理学一系列波动方程开始应用到了微观世界里。

然而,我们试想,如果我们在双缝干涉实验中,将激光器做一个调整,使得激光器一次只能发射出一个光子。会出现什么情况呢?


当我们将激光器调整之后再做这个实验,使得激光器单位时间内只发射一个光子。由于单个光子只能通过一条狭缝,它不可能与自己发生干涉 ,我们看到的应该是屏幕上的一个亮点。但事实上却出现了上图所示的干涉条纹。随着时间的累积,感光荧幕上的光子数量越来越多,渐渐出现了明显的干涉条纹。难道光子可以知道自己处在这样一个双缝干涉实验仪器当中以至于表现出干涉行为吗?这种解释过于玄奥了。爱因斯坦所支持的波动学派提出,光子是量子,按照概率表现出行为,所以会出现干涉条纹。薛定谔方程也能够完美的解释这个现象。

于是我们设计了这样一个实验装置。在上述双缝干涉实验中的一条狭缝安装一个光子探测器,只要探测器读数为1,就说明光子通过了这条狭缝,如果读数为0,则说明光子通过的是另一条狭缝。由于其他实验装置和步骤不变,可以想见,光子应该同样会出现上图那样的干涉条纹。

但事实却不是,一旦我们将探测器打开,无论光子是否通过探测器所在的那条狭缝,屏幕上也再不会出现干涉条纹。而一旦将探测器关闭,干涉条纹则重新出现在荧幕上。
这表明探测器打开与否直接影响到光子的行为——观察。

这与探测器的构造,是否有人在旁边看探测器的读数没什么关系。这表明,一旦我们确定了光子所通过的狭缝——它的位置——光子就不再表现出令人匪夷所思的自干涉现象了。

据此,波尔等人则提出了自己的理论——量子系统的整体性特征。

波尔认为,不论是系统一部分被替换,抑或是加入一个无足轻重的小玩意儿,系统本身已经改变,所以光子的行为就会改变。根据海森堡不确定性原理,任何企图掌握粒子状态的努力都会改变粒子状态——观察导致粒子状态改变。这与我们的日常经验十分矛盾。粒子变成了一种不可知的东西。波动派科学家则通过波动方程试图打开一扇窗户——波函数塌缩。薛定谔曾经做过一个比喻,一只关在密闭箱子里的猫,其身边有一个毒气发生装置(原本更为复杂,这里就不想细说了),只要我们不打开箱子来看,那么就无法知道这只猫是否触碰了毒气发生装置,也就不知道猫是否已被毒死。按照哥本哈根学派的解释,这只猫就应该处于一种半死不活的状态——既是死的,又是活的。薛定谔做这个比喻,是想通过它来揭示量子力学在宏观层面上的不完备性。而正是这次攻击,导致了之后的这个经典实验。

量子擦除实验
在说这个实验前,我们来看曾经老爱和波尔之间争锋相对的一次较量。

1930 年秋天,第六届索尔威会议开幕了。会议由郎之万任主席。这次会议的主题是“物质的磁性”。但是从物理学史和人类思想史的观点来看,关于量于力学基础问题的讨论显然在这次会议上形成了“喧宾夺主”之势。各国的科学家怀着激动的心情,期待着两位巨人之间新一轮论战。
  这次,爱因斯坦经过三年的深思熟虑,秣马厉兵,显得胸有成竹,一开始便先发制人。他提出了著名的“光子箱”(又称“爱因斯坦光盒”)思想实验。他提出用相对论的方法,来实现对单个电子同时进行时间和能量的准确测量。如果这个方法可行,那么,即可宣告测不准关系破产,玻尔的工作 和量子论的诠释将被推翻。
  爱因斯坦沉着地在黑板上画了一个“光子箱”思想实验的草图,在一小盒子——光子箱中装有一定数量的放射性物质,下面放一只钟作为计时控制器,它能在某一时刻将盒子右上方的小洞打开,放出一个粒子(光子或电子),这样光子或电子跑出来的时间就能从计时钟上准确获知。少了一个粒子,小盒的重量差则可由小盒左方的计量尺和下面的砝码准确地反映出来,根据爱因斯坦质能公式 E=mc2,重量(质量)的减少可以折合成能量的减少。因此,放出一个粒子准确的时间和能量都能准确测得。这与海森堡的不确定性原理完全相左,准确性和因果性再次获得了完整的表达。爱因斯坦最后还着重表示,这一次实验根本不涉及观测仪器的问题,没有什么外来光线的碰撞可以改变粒子的运动。一轮新的论战就这样开始了。
  这一回,玻尔遇到了严重挑战。他刚一听到这个实验时,面色苍白,呆若木鸡,感到十分震惊,不能马上找出这个问题的答案。当时他着实慌了手脚,在会场上一边从一个人走向另一个人,一边喃喃地说,如果爱因斯坦正确,那么物理学就完了。据罗森菲尔德回忆,当这两个对手离开会场时,爱因斯坦那天显得格外庄严高大,而玻尔则紧靠在他的旁边快步走着,非常激 动,并徒劳地试图说明爱因斯坦的实验装置是不可能的。
  当天夜里,玻尔和他的同事们一夜没合眼。玻尔坚信爱因斯坦是错的,但关键是要找出爱因斯坦的破绽所在。他们检查了爱因斯坦实验的每一个细 ,奋战了一个通宵,终于找出了反驳爱因斯坦的办法。
  第二天上午,会议继续进行,玻尔喜气洋洋地走向黑板,也画了一幅“光子箱”思想实验的草图,与爱因斯坦不同的是,玻尔具体给出了称量小盒子重量的方法。他把小盒用弹簧吊起来,在小盒的一侧,他画了一根指针,指针可以沿固定在支架上的标尺上下移动。这样,就可以方便地读出小盒在粒子跑出前后的重量了。然后,玻尔请大家回忆爱因斯坦创立的广义相对论。从广义相对论的等效原理可以推出,时钟在引力场中发生位移时,它的快慢要发生变化。因此,当粒子跑出盒子而导致盒子重量发生变化时,盒子将在重力场中移动一段距离,这样所读出的时间也会有所改变。这种时间的改变,又会导出测不准关系。可见,如果用这套装置来精确测定粒子的能量,就不能准确控制粒子跑出的时间。玻尔随之给出了运用广义相对论原理的数学证明。
  这下,爱因斯坦不得不又一次承认,玻尔的论证和计算都是无可指责的。他自己居然在设计这个理想实验时,只考虑了狭义相对论而没有考虑广义相对论,出了一个大疏忽,实在太遗憾了。他意识到在量子力学的形式体系范围内是驳不倒测不准关系的,在口头上承认了哥本哈根观点的自洽性。这时,与爱因斯坦和玻尔都是好朋友的埃伦菲斯特,以开玩笑的口气对爱因斯坦说,你不要再试图制造“永动机”了。爱因斯坦表示欣然接受。
  玻尔的胜利赢得了越来越多物理学家对他观点的赞同。量子力学的哥本哈根解释己被绝大多数物理学家奉为正统解释。但玻尔并没有满足在会议上所取得的胜利,他回去后又仔细研究了“爱因斯坦光盒”的每一个细节,并且让他的学生、物理学家伽莫夫制作了一个实体模型。至今这个模型仍保存在哥本哈根的玻尔理论物理研究所中。
  在爱因斯坦和玻尔论战的两个回合中,玻尔以其人之道反治其人之身,巧妙地利用爱因斯坦设计的思想实验和他创立的相对论,驳倒了爱因斯坦本人,取得了论战的胜利。虽然爱因斯坦在具体物理问题上失败了,但他对物理世界的基本观点丝毫未变,仍坚持“上帝不会掷骰子”,在量子力学的诠释背后一定有着更根本的规律,它们才能正确、全面解释量子现象。
——以上引用自百度

下面的,是爱因斯坦光子箱的思想实验图


量子擦除实验是杨氏双缝干涉实验的一个变形。人们已经认识到在双缝实验中,如果光子穿过了哪条间隙被观测到了,那么光子就无法与自身发生干涉。如果一束光子中的每一个光子都像这样被确定从哪条间隙穿过的话,那么我们就无法看到杨氏实验中的干涉图案。而这个实验试图制造这样一种状况:如果我们确定光子穿过了哪条间隙并做上“标记”,那么将不会有干涉现象发生,但如果在这个光子到达屏幕前,我们将这个标记擦除,那么我们又将观测到杨氏实验中的干涉现象。  量子擦除实验的意义在于,在双缝实验中探测或标记光子路径将会破坏干涉,但在此之后再擦除这个标记,人们可以重新恢复量子干涉。 
实验分三个阶段。 

第一阶段,使用非线性BBO晶体产生纠缠光子对。自光子对产生起,它们就具有不同偏振态,沿不同方向传播。沿下路径传播的光子会遇到双缝,使用灵敏的探测器可以扫出这些光子的干涉图样。 


第二阶段,在下路径上插入四分之一波片。这样任何通过缝A的光子将会被改变为顺时针或逆时针的圆偏振,任何通过缝B的光子的则具有相反方向的圆偏振。当探测设备在先前的移动范围内重新扫过,可以发现探测结果不再相同 - 干涉条纹消失 - 即,任何标记了光子路径的行为都会破坏干涉条纹。 


第三阶段,下路径不作变动,将一个起偏器插入到上路径,使得任何通过下路径的纠缠光子对的偏振方向也受到影响。因为上路径的光子的偏振方向发生变化,下路径光子的偏振状态也会改变。通过对上路径上起偏器选择合适的偏振角,令下路径上刚好有一半的光子具有相同的偏振方向。一旦它们有相同的偏振态,它们可以再次彼此干涉,或者从另一个角度来看,已经没有标记指明哪个通过缝A,哪个通过缝B。  


延迟选择实验
爱因斯坦借用麦克尔逊—莫雷的光行差实验装置,把双缝实验变成了分光实验,二者的物理意义是相同的。实验装置见图。图1由三个部分组成,标记为a,b,c。


图1a,光子从光源发出,遇到一个镀银的半透镜,如果按经典理论,则光波分成两半,各占50%。如果按量子力学分析,则光子反射和透射的几率各占一半,整个系统的波函数是两者的叠加。分成两半的光波或几率各半的光子经A、B两个反射镜反射,在C处汇聚。在此,有两种方案。
  其一:如图1b,在C处放置两个探测器。如上面的响,表明光子来自B,如下面的响,表明光子来自A。探测器每响一次,完成一次测量。按照经典理论,我们相信这个光子在测量之前就已经存在,光子或反射,经A到达C;或透射,经B到达C。在某一个确定的时刻,光子必然处于某一条轨道的某一个位置上。但是我们不知道它究竟在哪个轨道上。需要通过测量进行反推。

其二:如图1c,在两探测器之前放置另一个半透镜,来自A/B的光子再次一半透射,一半反射,在此干涉。调整光程差,可以使达到上面探测器的干涉光相消,此探测器将不会接收到任何光子信号;则到达下面探测器的干涉光必然相加,只要光源发出光子,必被此探测器接收。每次测量都表明,光子是同时经过两条路线到达C的。
  在此,放还是不放第二块半透镜,相当于在双缝实验中打开还是遮挡另一个狭缝,但更加简明。
  爱因斯坦认为,一个光子不可能既能只走一条路线,又能同时走两条路线。这表明量子论是自相矛盾的。玻尔用其互补原理进行解释,认为两者并不矛盾,因为这是两个不同的实验,而关键的是不可能同时做两个实验。
  于是,我们的测量方式对被测量的事件产生了不可挽回的影响。


延迟选择:还原论与整体论解释
  惠勒的突破性在于:延迟选择 (2)。1979年,在普林斯顿纪念爱因斯坦诞辰100周年的专题讨论会上,惠勒正式提出了延迟选择的思想:即当光子已经通过A/B之后再决定是否放置半透镜。如果放,我们可以说光子同时走过两条路;如果不放,则只走一条。这样就导致了一个怪异的结论:观察者现在的行为决定了光子过去的路线。由于这个思想实验并没有限制实验室的尺度,A、B两条路线原则上可以无穷长,几米、几千米乃至几亿光年都不会影响最后的结论。观察者现在的行为所决定的过去可能是非常遥远的过去,甚至远到人类还没有诞生的宇宙早期。
  更严重的危机出现了。现在已经不仅是光子究竟走哪一条路,能不能知道走哪一条路的问题;甚至基本的因果性时间顺序遭到了挑战。

  延迟选择实验集中地、突出地把量子力学对传统实在观的挑战展现出来。“存在如何?量子如何?宇宙如何?”这些关于实在本性的问题一直是惠勒所关心的。惠勒认为,这些问题应该成为下一代物理学家所投身的目标,它们首先是物理学问题,而不是哲学或者神学问题。 
  对于物理学家来说,一个问题遇到了障碍,总是习惯性地重新思考其物理过程。重新分析,已知的条件有哪些,未知的有哪些,要解答什么。对于延迟选择实验这个问题,我们也不妨以物理学的视角重新审视一下。我们假设这个实验在宇宙尺度进行,则其物理过程如下:
  过程1’,有一个又一个光子,从太空遥远的星系来到地球,进入实验室的仪器。
  过程2’,观测者把半透镜放到C处,经调整,使上面的探测器不停地响,下面的没有反应。
  过程3’,把半透镜拿开,两个探测器轮流作响。
  问题:光子究竟走一条路还是走两条路。
  分析之前,需要强调两个前提:

(1)光子在同样的实验条件下,应表现出同样的行为。可称之为稳定性前提,这几乎是人类知识存在的前提。

(2)所有光子的性质都是相同的。只有这样,对不同的光子所作的实验,才能相当于对同一个光子进行不同的实验。

根据过程2’的结果反推,可以认为光子是同时从两个路线过来的。
  而在过程3’,则可以根据探测器的响应,判断光子走过了哪一条路线。
  光子显然表现了两种行为。爱因斯坦认为,这与稳定性假设相矛盾。玻尔不否认稳定性假设,同意在同样的物理条件下,光子只能有一种行为。但是玻尔认为:过程2’和3’,物理条件恰恰不同。因为一个是放置半透镜,一个是不放。
  从经典角度看,这种解释近似狡辩。在经典物理学看来,2’和3’的物理过程是相同的,因为光子在到达C点之前的一切条件都无差别,所谓差异只是在用不同的实验手法来观测同一个物理事件而已,完全是观察者的主观选择造成的。对此,玻尔的回答是:“在量子效应的分析中,不可能在各原子客体的独立行为和它们与一些测量仪器相互作用之间划出任何截然的分界线;那些测量仪器是起着定义现象发生时所处条件的作用的。”[5]玻尔把观察者引入到物理条件中来,他认为,在量子理论中,不存在如经典物理学中那样纯粹客观的观察者,主体和客体之间并无截然的界限。经典物理主客两分的叙述模式在量子世界中已经不适用了。
  但是,从经典的角度看,即使1’和2’不同,不同的也只是光子经过C点之后的部分,此前的物理条件还是相同的,而在C点之后的观察者不可能对在此之前的光子行为造成影响。对此,玻尔仍然坚持,不能把原子客体和观测它的仪器分开,这完全是两个实验。尽管看起来只是最后的部分发生了变化,但是只要有一个局部变了,整个物理过程全部改变了。玻尔说:“事实上,在粒子路径上再加任何一件仪器,例如一个镜子,都可能意味着一些新的干涉效应,它们将本质地影响关于最后记录结果的预言。” (3)[6]经典物理的还原论和量子理论的整体论之间的冲突在这里鲜明地表现出来。
  按照经典物理学所坚持的还原论,正如物质本身可以分解成部分,物理过程也可以分解成部分。各个部分可以拆卸,相同的部分可以替换,每个部分在不同的整体中具有相同的性质。在这个实验中,既然前半部分是相同的,光子在前半部分的行为也应该是相同的。但是,根据量子理论,却只能说,这是完全不同的两个不可分的过程。对此,我们或者放弃经典物理的还原论立场,接受量子理论给出的整体论;或者坚持经典物理的实在观,否定量子理论给出的实在描述是完备的。惠勒明确指出:量子理论要求一种新的实在观。

  在玻尔—爱因斯坦争论的分光实验中已经隐含了时间问题。因为放与不放第二块半透膜,决定着被观测的光子的行为。而光子总能做出相应的表现,似乎能预先知道观测者的决定。由于他们的注意力在路径上,时间次序的倒错被忽略了。
  延迟选择把时间问题凸显出来。在光子已经走过了漫长的道路之后,无论它从A来还是从B来,都已经发生,不可能重新来过。既然我们承认那个倒霉的光子从遥远的几万光年来到实验室需要几万年的时间,我们的决定注定是在光子走完了大部分路程之后做出的。从时间的角度看,惠勒为还原论者设计了最后一个可还原的部分,把整个过程分成了两个两个时段。在光子走完了前个时段,再决定做后个时段的实验。如果你承认光子的漫漫长路可以分解成前后时段,就只好承认,观察者在后个时段的选择对光子已经完成的前个时段的行为造成了影响。

  一向关心哲学问题的物理学家保罗·戴维斯(Paul Davies)把对延迟选择实验的上述解释称为玻尔—惠勒阐释。戴维斯指出,惠勒把量子力学的测量行为和时间本性之间的关系突出地表现出来,把哥本哈根学派的思想推到了逻辑上的极致。

延迟选择实验的可操作性
  延迟选择实验不只是一个思想实验,还具有可操作性。惠勒在自传中说:
  与其它许多思想实验一样,技术进步跟上了理论,使它变成真正的实验。Maryland大学的Carroll Alley, Oleg Jakubowicz, William Wickes于1984年——在实验室的实验台上,不是在棒球场上——演示了这个实验。爱因斯坦一直试图回避,而玻尔认为无法回避的量子世界的奇异性,是真实的。
  如果延迟选择在实验室中是真的,在棒球场的尺度上肯定也是真的,在宇宙范围肯定也是真的。……那么,我们只好认为每一个单个的光子在其从类星体到地球的数十亿年的旅程中,以昙花一现的几率云的形式同时经过了跨越两个星系的两个路径,延展到遥远的空间,直到我们用测量把光子钉住。否则,还有什么可能的解释呢?既然我们在决定是测量来自两条路径的干涉还是测量光子究竟走过哪一条路径的时候,光子已经上路十亿年了,我们必须得出这样的结论,我们这个测量的行为,不仅把光子自身历史的性质展现给我们,而且,在某种意义上,决定了光子的历史。宇宙过去的历史并不比我们通过现在的测量指定给它的历史具有更多的合理性! 
  宇宙尺度上的延迟选择实验也具有可操作性:
  有两个天体,名字是0957+561A和B,它们曾被认为是两个不同的类星体。二者分开的视角是6弧秒。现已证明:二者实际上是一个类星体的两个像。……这个结果把光束分离实验从实验室尺度扩大到了宇宙尺度。
  由引力透镜造成的类星体双像成为在地球上进行宇宙尺度的延迟选择实验的天然光源。惠勒提出了一个实验装置。将望远镜分别对准两个类星体像,利用光导纤维调整光程差,并将光子引入实验装置,就可以完成星际规模的延迟选择实验。

  延迟选择实验突显了量子理论与经典物理在实在问题上的深刻分歧。在此基础之上,惠勒进一步提出参与的宇宙(participatory universe)的观念,把整体论从空间延伸到时间,不仅空间不能被分割成一个个部分,从宇宙大爆炸到今天的全部时间,也是一个整体。

总结下,量子力学啥也没证明,它只是从另一个可能的角度描述了我们的宇宙——一种难以言喻的无限不可分时空观。跟佛大湿鼓吹的“量子力学证明了唯心”没有半毛钱关系,量子力学其本质依旧是唯物的

按:本文由 百度科学总会 推荐,想交流的请加QQ群:468541600。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
未来决定现在?延迟实验的启示
波尔和爱因斯坦的世纪争论
爱因斯坦和玻尔的伟大论战
两个人的一百年
量子纠缠
吴国盛丨量子力学与整体论
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服