打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
国际单位制的发展史

国际单位制的发展史

  长度的单位

 古代常以人体的一部分作为长度的单位。例如我国三国时期(公元三世纪初)王肃编的《孔子家语》一书中记载有:“布指知寸,布手知尺,舒肘知寻。”两臂伸开长八尺,就是一寻。还有记载说:“十尺为丈,人长八尺,故曰丈夫。”可见,古时量物,寸与指、尺与手、寻与身有一一对应的关系。

  西方古代经常使用的长度单位中有所谓的“腕尺”,约合52~53厘米,与从手的中指尖到肘之间的长度有密切关系。

  也有用实物作为长度单位依据的。例如,英制中的英寸来源于三粒圆而干的大麦粒一个接一个排成的长度。

  多少年来世界各国通行种类繁多的长度单位,甚至一个国家或地区在不同时期采用不同的长度单位,杂乱无章,极不统一,对商品的流通造成许多麻烦。所以,随着科学技术的进步,长度单位逐渐趋于统一,这个进程早在几百年前就已经开始了。

  1790年法国国民议会通过决议,责成法国科学院研究如何建立长度和质量等基本物理量的基准,为统一计量单位打好基础。次年,又决定采用通过巴黎的地球子午线的四分之一的千万分之一为长度单位,选取古希腊文中“metron”一词作为这个单位的名称,后来演变为“meter”,中文译成“米突”或“米”。从1792年开始,法国天文学家用了7年时间,测量通过巴黎的地球子午线,并根据测量结果制成了米的铂质原器,这支米原器一直保存在巴黎档案局里。

  法国人开创米制后,由于这一体制比较科学,使用方便,欧洲大陆各国相继采用。

  后来又作了测量,发现这一米原器并不正好等于地球子午线的四千万分之一,而是大了0.2毫米。人们认为,以后测量技术还会不断进步,热必会再发现偏差,与其修改米原器的长度,不如就以这根铂质米原器为基准,从而统一所有的长度计量。

  1875年5月20日由法国政府出面,召开了20个国家政府代表会议,正式签置了米制公约,公认米制为国际通用的计量单位。同时决定成立国际计量委员会和国际计量局。到1985年10月止,米制公约成员国已有47个。我国于1977年参加。

  国际计量局经过几年的研究,用含铂90%、铱10%的合金精心设计和制成了30根横截面呈X琪的米原器。这种形状最坚固又最省料,铂铱合金的特点则是膨胀系数极小。这30根米原器分别跟铂质米原器比对,经过遴选,取其中一根作为国际米原器。1889年,国际计量委员会批准了这项工作,并且宣布:1米的长度等于这根截面为X形的铂铱合金尺两端刻线记号间在冰融点温度时的距离。

  其余一些米原器都与国际米原器作过比对,后来大多分发给会员国,成为各国的国家基准,以后每隔几十年都要进行周期检定,以确保长度基准的一致性。

  然而实际上米原器给出的长度并不一定正好是1米,由于刻线工艺和测量方法等方面的原因,在复现量值时总难免有一定误差,这个误差不小于0.1微米,也就是说,相对误差可达1×10e(-7)。时间长了,很难保证米原器本身不会发生变化,再加上米原器随时都有被破坏的危险。所以,随着科学与技术的发展,人们越来越希望把长度的基准建立在更科学、更方便和更可靠的基础上,而不是以某一个实物的尺寸为基准。光谱学的研究表明,可见光的波长是一些很精确又很稳定的长度,有可能当作长度的基准。19世纪末,在实验中找到了自然镉(Cd)的红色谱线,具有非常好的清晰度和复现性,在15摄氏度的干燥空气中,其波长等于 y=6438.4696×10e(-10)米。

  1927年国际协议,决定用这条谱线作为光谱学的长度标准,并确定1米=1553164.13yCd,人们第一次找到了可用来定义米的非实物标准。

  科学家继续研究,后来又发现氪( 86 Kr)的橙色谱线比镉红线还要优越。1960年,在第十一届国际计量大会上,决定用氪(86Kr)橙线代替镉红线,并决定把米的定义改为: “米的长度等于相当于氪(86Kr)原子的2P10到5d5能级之间跃迁的辐射在真空中波长的1650763.73倍。”

  这个基准的精确度相当高,相对误差不超过4×10e(-9),相当于在1千米长度测量中不差4毫米。

  但是原子光谱的波长太短,又难免受电流、温度等因素的影响,复现的精确度仍受限制。60年代以后,由于激光的出现,人们又找到了一种更为优越的光源,用激光代替氪谱线,可以使长度测量得更为准确。只要确定某一时间间隔,就可从光速与这一时间间隔的乘积定义长度的单位。80年代,用激光测真空中的光速c,得c=299792458米/秒。

   1983年10月第十七届国际计量大会通过了米的新定义:“米是光在真空中1/299792458秒的时间间隔内所经路程的长度”。新的米定义有重大科学意义。从此光速c成了一个精确数值。把长度单位统一到时间上,就可以利用高度精确的时间计量,大大提高长度计量的精确度。

 

  质量单位

  古代质量单位和长度单位的情况相似,也有多种多样的形式。例如:在波斯用卡拉萨(Karasha)作质量的单位,约合0.834千克,埃及用格德特(gedet),约合9.33克。我国秦代度量衡制度中规定:1石=4钧,1钧=30斤,1斤=16两。与现代国际单位制比较,1斤约合0256千克。英制中以磅(pound),盎司(ounce),打兰(dram),格令(grain)作单位:1磅=16盎司=265打兰=7000格令

  不列颠帝国曾用纯铂制成磅原器,它是高约1.35英寸,直径1.15英寸的纯铂圆柱体。

  最初的千克质量单位是由18世纪末法国采用的长度单位米推导出来的。1立方分米纯水在最大密度(温度约为4摄氏度)时的质量,就定为1千克。

  1799年法国在制作铂质米原器的同时,也制成了铂质千克基准,保存在巴黎档案局里。

  后来发现这个基准并不准确地等于1立方分米最大密度纯水的质量,而是等于1000028立方分米。于是在1875年米制公约会议之后,也用含铂90%、铱10%的合金制成千克原器,一共做了三个,经与巴黎档案局保存的铂质千克原器比对,选定其中之一作为国际千克原器。这个国际千克原器被国际计量局的专家们非常仔细地保存在特殊的地点,用三层玻璃罩好,最外一层玻璃罩里抽成半真空,以防空气和杂质进入。随后又复制了四十个铂铱合金圆柱体,经过与国际千克原器比对后,分发给各会员国作为国家基准。跟米原器一样,千克原器也要进行周期性的检定,以确保质量基准的稳定可靠。

 

  时间单位

  在人类观察到的自然现象中,以天空中发生的现象为最明显,也最有规律,所以很自然地时间的量度以地球自转的周期作为基准,这就是所谓的太阳日。1秒=1/86400平太阳日。但是由于地球自转并不均匀也不稳定,1960年国际计量大会确认,把时间基准改为以地球围绕太阳公转为依据,即:把秒定义为在1900年地球绕太阳沿轨道运动一周所需时间的1/31556925.9747。这一数据之所以有如此之高的精确度,是因为这个结果是通过为期数年的一系列天文观测获得的。

  然而根据这个定义很难对秒本身进行直接比较。正好在这期间,时间和频率的测量技术有了很大发展,
1967年第十三届国际计量大会重新规定了时间单位的定义:“秒是铯-133原子基态的两个超精细能级之间跃迁所对应的辐射的9192631770个周期的持续时间。”

 

  温标

   现在通用的国际单位制中温度以开尔文(K)表示,这个温度单位也是基本单位。严格说来,温度单位的选择实际上是一个温标问题。热学发展史中出现过华氏温标、列式温示、兰氏温标、摄氏温标、气体温标和热力学温标等。热力学温标是1848年开尔文首先提出的,由热力学温标定义的热力学温度具有最严格的科学意义。其余几种都属于经验温标,其共同特点是人为选择某一特定的温度计和若干温度固定点来定义温标,因此缺乏客观标准。这些经验温标已成为历史,但跟现代的温标仍有一些渊源关系。

  华氏温标是德国人华伦海特(D.G.Fahrenheit)大约在1710年提出的,规定水的冰点为32度,水的沸点为212度。华氏温度至今还在英、美等国民间流行。

  列氏温标由列奥缪尔(R.A.F.Reaumur)于1730年提出,规定水的冰点为零度,水的沸点为80度。列氏温标在德国曾一度流行。

  兰氏温标由英国人兰金(Rankine)提出,其定义为

tR=tF+459.67

  实际上兰氏温度是以绝对零度为计算起点的华氏温度,以0R表示之。现在科技界已很少采用。

  摄氏温标是瑞典天文学家摄尔萨斯(A.Celsius)在1742年提出的。他原来的方案是以水的沸点为零度,水的冰点为100度。次年法国人克里斯丁(Christian)把两个标度倒过来,就成了现在通用的标度。

  以气体温度计标定温度所构成的气体温标最接近热力学温标。由于气体温度计的复现性较差,国际间又协议定出国际实用温标,以统一国际间的温度量值,国际实用温标几经变革,为此定出的温度尽可能接近热力学温度。

  早在1887年,国际计量委员会就曾决定采用定容氢气体温度计作为国际实用温标的基础。

  1927年第七届国际计量大会决议采用铂电阻温度计等作为温标的内插仪器,并规定在氧的凝固点(-182.97摄氏度)到金凝固点(1063摄氏度)之间确定一系列可重复的温度或固定点。

  1948年第十一届国际计量大会对国际实用温标作了若干重要修订。例如,以金融点代替金凝固点;以普朗克黑体辐射定律代替维恩定律;引用更精确的常数值;计算公式更为精确;光测高温计的测量限值扩大等等。

  1960年又增加了一条重要修订,即把水的三相点作为唯一的定义点,规定其绝对温度值为273.16(精确),以代替原来水冰点温度为0.00摄氏度(精确)之规定。而水的冰点根据实测,应为273.1500±0.0001K。采用水的三相点作为唯一的定义点是温度计量的一大进步,因为这可以避免世界各地因冰点变动而出现温度计量的差异。

  1968年对国际实用温标又作了一次修订,代号为IPTS-68。其特点是采用了有关热力学的最新成就,使国际实用温标更接近热力学温标。这一次还规定以符号K表示绝对温度,取消原来的符号(K),并规定摄氏温度与热力学温标的绝对温度单位精确相等,摄氏温度t=绝对温度T-273.15(精确)。

  1975年和1976年分别对IPTS-68作了修订和补充,把温度范围的下限由13.8K扩大到0.5K。但还是出现不足之处,主要是在实验中不断发现IPTS-68在某些温区与国际单位制定义的热力学温度偏差甚大。

  1988年国际度量衡委员会推荐,第十八届国际计量大会及第77届国际计量委员会作出决议,从1990年1月1日起开始在全世界范围内采用重新修订的国际温标,这一次取名为1990年国际温标,代号为ITS-90,取消了“实用”二字,因为随着科学技术水平的提高,这一温标已经相当接近于热力学温标。和IPTS-68相比较,100摄氏度时偏低0.026摄氏度,即标准状态下水的沸点已不再是100摄氏度,而是99.974摄氏度。

  显然,ITS-90的实施会给精密温度计量带来好处,是科学技术发展的又一标志


本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
谈谈长度的量测单位
长度单位米的前生今世与未来
以前,我国只有不到10支这种温度计……
“米”的确定与演变
光速刚好每秒三十万公里,是设计出来的还是巧合?
“米”是如何诞生的?.docx
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服