打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
黑洞
黑洞-天体名称
编辑词条
黑洞(Black hole)是根据现代的广义相对论所预言的,在宇宙空间中存在的一种质量相当大的天体和星体(并非为一个“洞”)。黑洞是由质量足够大的恒星在核聚变反应的燃料耗尽而死亡后,发生引力坍缩而形成。黑洞的质量是如此之大,它产生的引力场是如此之强,以致于任何物质和辐射都无法逃逸,就连传播速度最快的光(电磁波)也逃逸不出来。由于类似热力学上完全不反射光线的黑体,故名为黑洞。在黑洞的周围,是一个无法侦测的事件视界,标志着无法返回的临界点。
目录
基本简介
发现时间
研究历史
基本分类
物理特征
产生过程
形成过程
科学观点
展开
编辑本段基本简介
黑洞是一个空间——时间区域,它的最外围是光所能从黑洞向外到达的最远距离,这个边界称为“事件视界”。它如同一个单向的膜,只允许物质穿过视界并落到黑洞里去,但没有任何物质能够从里面出来。
“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的。[2][1][3]
编辑本段发现时间
美国宇航局2010年11月15日发现地球附近有一个年仅30岁的黑洞,这也是人类科学史上发现的最年轻的黑洞。
这个最年轻的黑洞是天文学家利用美国宇航局的钱德拉X射线望远镜发现的,它为观测这类婴儿期天体提供了独一无二的机会。美国宇航局声称,这个黑洞将能够帮助科学家更好地理解大质量恒星是如何爆炸的,恒星爆炸后留下的是黑洞还是中子星,以及银河系和其他星系黑洞的数量。
这个30岁的黑洞是距离地球约5000万光年的M100星系中的超新星“SN1979C”的余烬。根据钱德拉X射线望远镜、美国雨燕卫星、欧洲宇航局牛顿X射线天文望远镜(XMM-Newton)以及德国伦琴卫星获得的数据显示一个明亮的X射线源,这个X射线源在1995年到2007年这段观测期内一直非常稳定,这表明这个天体是一个黑洞,它正在吞噬这颗超新星和伴星落下的物质。
这是唯一一个人类全程见证它形成的黑洞,也是超新星爆炸能够形成黑洞的唯一的直接证据。
编辑本段研究历史
历史上,第一个意识到一个致密天体密度可以大到连光都无法逃逸的人是英国地理学家John Michell。他在1783年写给亨利·卡文迪什一封信中提出这个想法的,他认为一个和太阳同等质量的天体,如果半径只有3公里,那么这个天体是不可见的,因为光无法逃离天体表面。1796年,法国物理学家拉普拉斯曾预言:“一个质量如250个太阳,而直径为地球的发光恒星,由于其引力的作用,将不允许任何光线离开它。由于这个原因,宇宙中最大的发光天体,却不会被我们看见”。
现代物理中的黑洞理论建立在广义相对论的基础上。由于黑洞中的光无法逃逸,所以我们无法直接观测到黑洞。然而,可以通过测量它对周围天体的作用和影响来间接观测或推测到它的存在。比如说,恒星在被吸入黑洞时会在黑洞周围形成吸积气盘,盘中气体剧烈摩擦,强烈发热,而发出X射线。借由对这类X射线的观测,可以间接发现黑洞并对之进行研究。黑洞的存在已被天文学界和物理学界的绝大多数研究者所认同。
编辑本段基本分类
按质量分
超巨质量黑洞:可以在所有已知星系中心发现其踪迹。质量据说是太阳的数百万至十数亿倍。
小质量黑洞:质量为太阳质量的10至20倍,即超新星爆炸以后所留下的核心质量是太阳的3至15倍就会形成黑洞。
理论预测,当质量为太阳的40倍以上,可不经超新星爆炸过程而形成黑洞。
中型黑洞:推论是由小质量黑洞合并形成,最后则变成超巨质量黑洞。中型黑洞是否真实存在仍然存疑。
根据物理特性分
根据黑洞本身的物理特性(质量、电荷、角动量):
不旋转不带电荷的黑洞。它的时空结构于1916年由史瓦西求出称史瓦西黑洞。
不旋转带电黑洞,称R-N黑洞。时空结构于1916-1918年由Reissner和Nordstrom求出。
旋转不带电黑洞,称克尔黑洞。时空结构由克尔于1963年求出。
一般黑洞,称克尔-纽曼黑洞。时空结构于1965年由纽曼求出。
原初黑洞
原初黑洞是理论预言的一类黑洞,尚无直接证据支持原初黑洞的存在。宇宙大爆炸初期,宇宙早期膨胀之前,某些区域密度非常大,以至于宇宙膨胀后这些区域的密度仍然大到可以形成黑洞,这类黑洞叫做原初黑洞。原初黑洞的质量与密度不均匀处的尺度有关,因此原初黑洞的质量可以小于恒星坍塌生成的黑洞,根据霍金的理论,黑洞质量越小,蒸发越快。质量非常小的原初黑洞可能已经蒸发或即将蒸发,而恒星坍塌形成的黑洞的蒸发时标一般长于宇宙时间。天文学家期待能观测到某些原初黑洞最终蒸时发出的高能伽玛射线。
编辑本段物理特征
黑洞只有三个物理量可以测量到:质量、电荷、角动量。也就是说:对于一个黑洞,一旦这三个物理量确定下来了,这个黑洞的特性也就唯一地确定了,这称为黑洞的无毛定理,或称作黑洞的唯一性定理。但是这个定理却只是限制了经典理论,没有否认可能有其他量子荷的存在,所以黑洞可以和大域单极或是宇宙弦共同存在,而带有大域量子荷。
质量
黑洞是由大于太阳质量的3.2倍的天体发生引力坍塌后形成的(小于1.4个太阳质量的恒星,会变成白矮星)。
天文学的观测表明,在很多星系的中心,包括银河系,都存在超过太阳质量上亿倍的超大质量黑洞。
尺寸
爱因斯坦的广义相对论预测有黑洞解。其中最简单的球对称解为史瓦西度量。这是由卡尔·史瓦西于1915年发现的爱因斯坦方程的解。根据史瓦西解,如果一个重力天体的半径小于一个特定值,天体将会发生坍塌,这个半径就叫做史瓦西半径。在这个半径以下的天体,其中的时空严重弯曲,从而使其发射的所有射线,无论是来自什么方向的,都将被吸引入这个天体的中心。因为相对论指出在任何惯性座标中,物质的速率都不可能超越真空中的光速,在史瓦西半径以下的天体的任何物质,包括重力天体的组成物质——都将塌陷于中心部分。一个有理论上无限密度组成的点组成重力奇点(gravitational singularity)。由于在史瓦西半径内连光线都不能逃出黑洞,所以一个典型的黑洞确实是绝对“黑”的。
史瓦西半径由下面式子给出:
G是万有引力常数,M是天体的质量,c是光速。对于一个与地球质量相等的天体,其史瓦西半径仅有9毫米。
史瓦西半径只是某一种黑洞的半径,指的是无自转,无磁场的黑洞,不能泛泛的说所有黑洞的直径为史瓦西半径,而且在现实中,不存在这样的黑洞,拥有史瓦西半径的黑洞只是一个理论假设。
温度
黑洞越大,温度越低
就辐射谱而言,黑洞与有温度的物体完全一样,而黑洞所对应的温度,则正比于黑洞视界的重力强度。换句话说,黑洞的温度取决于它的大小。若黑洞只比太阳的几倍重,它的温度大约只比绝对零度高出亿分之一度,而更大的黑洞温度甚至更低。因此这类黑洞所发出的量子辐射,一律会被大爆炸所留下的2.7度辐射(宇宙背景辐射)完全淹没。
事件视界
事件视界又称为黑洞的视界,事件视界以外的观察者无法利用任何物理方法获得事件视界以内的任何事件的资讯,或者受到事件视界以内事件的影响。事件视界是造成黑洞所以被称为黑洞的根本原因,不过实际的观测还没有发现事件视界。
光子球
光子球是个零厚度的球状边界,光子只要切线闯入这个边界内,虽然不一定会被黑洞所捕获,但是会处在一个圆形的轨道里面,无法逃脱黑洞的视界之外。对于非旋转的黑洞来说,光子球大约史瓦西半径的一点五倍。这个轨道不是稳定的,随时会因为黑洞的成长而变动。 光子球之内光子依然有办法脱离,但是对于外部的观察者来说,任何观察的到的由黑洞发出的光子,都必须处于事件视界与光子球之间。这也是反对黑洞存在的人所依据的的强烈反对事实之一,透过观察光子球的光子能量,无法找到事件视界存在的证据。
参考系拖曳圈
参考系拖曳圈(Ergosphere,又称Frame Dragging或是Lense Thirring Effect,“兰斯-蒂林效应圈”),转动状态的质量会对其周围的时空产生拖拽的现象,这种现象被称作参考系拖拽。旋转黑洞才有参考系拖曳圈,也就是黑洞南北极与赤道在时空效应上有所不同。
观测者可以利用光圈效应及参考系拖曳圈,观测进入或脱离黑洞的光子的运动,透过间接的手段,例如粒子含量的分布及Penrose Process(旋转黑洞的能量拉出过程),来间接了解其重力的分布,透过重力的分布重新建立出其参考系拖曳圈。这种观测方式,只有双星以上的系统才能够进行这样的观测。
时间场异常
黑洞周围由于引力强大的因素,理论预期会发生时间场异常现象,这包含了周围的参考系拖曳圈及事件视界效应。
编辑本段产生过程
黑洞就是中心的一个密度无限大、时空曲率无限高、热量无限高、体积无限小的奇点和周围一部分空空如也的天区,这个天区范围之内不可见。黑洞的产生过程类似于中子星的产生过程;某一个恒星在准备灭亡,核心在自身重力的作用下迅速地收缩,塌陷,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星体,同时也压缩了内部的空间和时间。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。由于高质量而产生的力量,使得任何靠近它的物体都会被它吸进去。黑洞开始吞噬恒星的外壳,但黑洞并不能吞噬如此多的物质,黑洞会释放一部分物质,射出两道纯能量——γ射线。
也可以简单理解:通常恒星的最初只含氢元素,恒星内部的氢原子时刻相互碰撞,发生聚变。
黑洞由于恒星质量很大,聚变产生的能量与恒星万有引力抗衡,以维持恒星结构的稳定。由于聚变,氢原子内部结构最终发生改变,破裂并组成新的元素——氦元素,接着,氦原子也参与聚变,改变结构,生成锂元素。如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成,直至铁元素生成,该恒星便会坍塌。这是由于铁元素相当稳定,参与聚变时不释放能量,而铁元素存在于恒星内部,导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引发恒星坍塌,最终形成黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,就再不能逃出。跟白矮星和中子星一样,黑洞可能也是由质量大于太阳质量好几倍以上的恒星演化而来的。
黑洞当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,物质将不可阻挡地向着中心点进军,直到最后形成体积接近无限小、密度几乎无限大的星体。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),质量导致的时空扭曲就使得即使光也无法向外射出——“黑洞”就诞生了。[4]
编辑本段表现形式  引力强大的黑洞。恒星的时空扭曲改变了光线的路径,使之和原先没有恒星情况下的路径不一样。光在恒星表面附近稍微向内偏折,在日食时观察远处恒星发出的光线,可以看到这种偏折现象。当该恒星向内坍塌时,其质量导致的时空扭曲变得很强,光线向内偏折得也更强,从而使得光线从恒星逃逸变得更为困难。对于在远处的观察者而言,光线变得更黯淡更红。最后,当这恒星收缩到某一临界半径(史瓦西半径)时,其质量导致时空扭曲变得如此之强,使得光向内偏折得也如此之强,以至于光线再也逃逸不出去 。这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会被拉回去。也就是说,存在一个事件的集合或时空区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者,这样的区域称作黑洞。将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合。
与别的天体相比,黑洞十分特殊。人们无法直接观察到它,科学家也只能对它内部结构提出各种猜想。而使得黑洞把自己隐藏起来的的原因即是弯曲的时空。根据广义相对论,时空会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短光程传播,但相对而言它已弯曲。在经过大密度的天体时,时空会弯曲,光也就偏离了原来的方向。
黑洞图片(36张)在地球上,由于引力场作用很小,时空的扭曲是微乎其微的。而在黑洞周围,时空的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。
更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的“侧面”、甚至“后背”,这是宇宙中的“引力透镜”效应。
这张红外波段图像拍摄的是我们所居住银河系的中心部位,所有银河系的恒星都围绕银心部位可能存在的一个超大质量黑洞公转。 据美国太空网报道,一项新的研究显示,宇宙中最大质量的黑洞开始快速成长的时期可能比科学家原先的估计更早,并且仍在加速成长。
一个来自以色列特拉维夫大学的天文学家小组发现,宇宙中最大质量黑洞的首次快速成长期出现在宇宙年龄约为12亿年时,而非之前认为的20~40亿年。天文学家们估计宇宙的年龄约为137亿年。
同时,这项研究还发现宇宙中最古老、质量最大的黑洞同样具有非常快速的成长。有关这一发现的详细情况将发表在最新一期的《天体物理学报》。
如果黑洞足够大,宇航员会开始觉察到拉着他脚的重力比拉着他头的重力更强大,这种吸引力拖着他无情地向下落,重力差会迅速加大而将他撕裂,最终他的遗体会被扯得粉碎而落入黑洞那无限致密核心。
普金斯基和他的两个学生艾哈迈德·艾姆哈里、詹姆斯·萨利,加上该校的另一位弦理论学家唐纳德·马洛夫一起,对这一事件进行了重新计算。根据他们的计算,却呈现出完全不同的另一番场景:量子效应会把事件视界变成沸腾的粒子大漩涡,任何东西掉进去都会撞到一面火焰墙上而被瞬间烤焦。
编辑本段形成过程
跟白矮星和中子星一样,黑洞也是由恒星演化而来的。
当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。
质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。根据科学家的猜想物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。
形成理论
任何两个物体之间都存在这种吸引作用。物体之间的这种吸引作用普遍存在于宇宙万物之间,称为万有引力。宇宙星体所产生的引力场(和星体的质量及密度有关)越大,从其表面逃逸所需的极限速度就越大。如果这个引力场大到某个极限,使以光速运动的物体也不能挣脱它的束缚而逃逸,那么人们将无法观察到这个星体,仅能感受到它的引力效应。巨大黑洞质量可能是太阳的几十万、几百万或几千万倍 。由于他质量无穷大,使得其他物体能脱离他的速度也需要很大。这个逃逸速度如果超过了光速,光也会被吸纳。所以,光逃离不了。人们也就看不到黑洞。
编辑本段科学观点
存在说
1967年,剑桥的一位研究生约瑟琳·贝尔发现了天空发射出无线电波的规则脉冲的物体,这对黑洞的存在的预言带来了进一步的鼓舞。在黑洞这个概念刚被提出的时候,共有两种光理论:一种是牛顿赞成的光的微粒说;另一种是光的波动说。
1783年,剑桥的学监约翰·米歇尔指出,一个质量足够大并足够紧致的恒星会有如此强大的引力场,以致于连光线都不能逃逸——任何从恒星表面发出的光,还没到达远处即会被恒星的引力吸引回来。米歇尔暗示,可能存在大量这样的恒星,虽然会由于从它们那里发出的光不会到达我们这儿而使我们不能看到它们,但我们仍然可以感到它们的引力的吸引作用。这正是我们现在称为黑洞的物体。它是名符其实的——在空间中的黑的空洞。几年之后,法国科学家拉普拉斯侯爵显然独自提出和米歇尔类似的观念。
根据天文观测的结果,黑洞负载循环与其宿主星系的恒星组成有关。这与把物质掷入黑洞,开启黑洞的负载循环有着相同的动力学过程。这个过程可能会影响星系中恒星的种类,在负载循环巅峰时爆发的黑洞,它所释放出的能量,可以改变星系中恒星的组成成分。这些成分对于了解星系系统的特性是至关重要的。星系中的恒星可以是红色、黄色或蓝色的,蓝色的恒星通常质量最大,但寿命也最短,只需几百万年,就会燃烧殆尽。这就表明,如果夜空中看到了蓝色的恒星,那就可目睹气年轻恒星系统的景象和它正在经历的生老病死。
随着对周围其他旋涡星系的研究发现:那些释放能量最多的黑洞,可以在数千光年的尺度上影响它的宿主星系。在物质落入黑洞的过程中,会发出强烈的紫外线和X射线,驱使热气体向外运动,扫过星系中恒星的形成区域。
如果没有星系和超大质量黑洞之间的共同演化,以及它们自身的特殊性,导致人类出现的整个事件链就会有所不同,甚至不复存在。
否定说
在学术上不同观点认为宇宙中不存在黑洞,这需要进一步的证明。黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故。人们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞。虽然这么说,但黑洞还是有它的边界,既“事件视界”。据猜测,黑洞是死亡恒星的剩余物,是在特殊的大质量超巨星坍塌收缩时产生的。另外,黑洞必须是一颗质量大于钱德拉塞卡极限的恒星演化到末期而形成的,质量小于钱德拉塞卡极限的恒星是无法形成黑洞的。
编辑本段人造黑洞
欧洲大型强子对撞机(LargeHadronCollider,简称LHC)被称为世界规模最庞大的科学工程,它将利用高速粒子束相撞产生的巨大能量,重建“大爆炸”发生后的宇宙形态。然而欧洲和美国的反对人士分别向当地法院提出起诉,要求叫停或推迟这个项目,他们的理由是,LHC能产生危险的粒子或者微型黑洞,从而毁灭整个地球。
2009年10月15 日,《科学》杂志宣布,世界上第一个“人造黑洞”在中国东南大学实验室里诞生。不过,这个小型“黑洞”不仅不会毁灭世界,还能帮助人们更好地吸收太阳能。
编辑本段毁灭过程
吸积与毁灭
黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。
当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。
当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。然而黑洞并不是什么都吸收的,它也往外边散发质子。
爆炸毁灭萎缩直至毁灭
黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸。霍金结合了广义相对论和量子理论。他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量(当一个粒子从黑洞逃逸而没有偿还它借来的能量,黑洞就会从它的引力场中丧失同样数量的能量,而爱因斯坦的公式E=mc 表明,能量的损失会导致质量的损失)。当黑洞的质量越来越小时,它的温度会越来越高。这样,当黑洞损失质量时,它的温度和发射率增加,因而它的质量损失得更快。这种“霍金辐射”对大多数黑洞来说可以忽略不计,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸。
沸腾直至毁灭
所有的黑洞都会蒸发,只不过大的黑洞沸腾得较慢,它们的辐射非常微弱,因此另人难以觉察。但是随着黑洞逐渐变小,这个过程会加速,以至最终失控。黑洞萎缩时,引力并也会变陡,产生更多的逃逸粒子,从黑洞中掠夺的能量和质量也就越多。黑洞萎缩的越来越快,促使蒸发的速度变得越来越快,周围的光环变得更亮、更热,当温度达到10^15℃时,黑洞就会在爆炸中毁灭。
参考资料:
1.黑洞的形成 
2.黑洞是什么 
3.研究发现黑洞在早期宇宙或非常普遍 
标签:
科学
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
关于黑洞,你可能不知道的十件事
黑洞你好:第一次拍到你前,我已经无数次描绘过你的样子 | 热点
假如被压缩到这个尺寸,你也会变成一个黑洞| 左文文
人类有可能活着进入黑洞吗?科学家:有一种黑洞有可能
你知道吗?宇宙中有些地方比黑洞还黑
太阳变成黑洞会怎样?地球并不会被吞噬,然而会变成另一番景象
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服