打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
NB-IoT这一年:未来已来 通信巨头抢占制高点
来源:飞象网(ID:cctimefxw),作者:吉利
我们正进入一个万物互联(IoT)的时代,NB-IoT因其低功耗、大覆盖等优势成为蜂窝网络产业应对万物互联的一个重要机会。无论是运营商大咖,还是设备商巨头,纷纷展示了完整的物联网解决方案和在不同垂直行业的应用。未来已来,NB-IoT在标准、技术、生态布局都已经整装待发,最好了改变世界的准备。
NB-IoT标准核心协议已冻结
基于蜂窝的窄带物联网(Narrow Band Internet of Things, NB-IoT)构建于蜂窝网络,只消耗大约180KHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络,以降低部署成本、实现平滑升级。为此,产业链从几年前就开始研究利用窄带LTE技术来承载IoT联接。历经几次更名和技术演进,2015年9月,3GPP正式将这一技术命名为NB-IoT。MWC2016上,NB-IoT首次亮相,便受到业界瞩目,运营商和设备商纷纷为其站台和背书。
2016年6月16日,在韩国釜山召开的3GPP RAN全会第72次会议顺利结束。NB-IoT作为3GPP R13一项重要课题,其对应的3GPP协议相关内容获得了RAN全会批准,正式宣告这项受无线产业广泛支持的NB-IoT标准核心协议历经2年多的研究终于全部完成,意味着NB-IoT即将进入规模商用阶段。
近期,根据《国家新一代信息技术产业规划》,建设NB-IoT网络成信息通信业十三五的重点工程之一。依托NB-IoT技术,物联网的规模化商用将全面提速。而在2016年11月29日产业链多方出席的一场窄带物联网研讨会上,中国信通院在介绍3GPP和CCSA的NB-IoT标准进展时透露,目前CCSA已经建立了较为完备的NB-IoT标准体系,于今年6月份完成NB-IoT行标的立项,预计年底完成NB-IoT行标。
据GSMA预测,到2020年全球互联设备将会到达270亿,其中100亿为移动连接设备。随着NB-IoT标准的冻结,将促使NB-IoT迅速规模化商用,也将会促进更多的产业链企业加入NB-IoT阵营,一个全球最大的蜂窝物联网生态系统正在成型。
全球运营商纷纷布局 NB-IOT规模化商用加速
随着NB-IOT规模化商用加速,全球的运营商都在加快窄带物联网的部署。2015年11月,数家全球主流运营商联合设备商、芯片厂商和相关国际组织,在香港举办NB-IoT论坛筹备会,旨在加速窄带物联网生态系统的发展,成员包括中国移动、中国联通、Etisalat、LG Uplus、意大利电信、Telefonica、沃达丰、GSMA、GTI、华为、爱立信、诺基亚、高通和英特尔。六家运营商成员还宣布,将在全球成立六个窄带物联网开放实验室,聚焦窄带物联网业务创新、行业发展、互操作性测试和产品兼容验证。
值得一提的是,中国的运营商积极投入对NB-IoT测试、参与标准制定等,让中国在NB-IoT发展中起到了引领的作用。作为目前中国物联网市场份额最高的运营商,中国移动在物联网战略上提出“到2020年实现50亿物联网连接数、1000亿元收入规模”。为实现这一目标,中国移动围绕物联网,在“云管端”3个领域构筑核心能力,积极研发NB-IoT和eMTC等新技术,测试部署试验网应用。为共建跨行业融合生态,中国移动设立了5G联合创新中心, 5G联合创新中心设置开放实验室。随着NB-IoT和eMTC的成熟,关于NB-IoT和eMTC的新技术、新方案和新产品也会放到中国移动开放实验室中向行业客户展示。
中国电信也在积极跟进NB-IoT技术发展,正式立项对NB-IoT关键技术、终端和业务开展研发,并提出了NB-IoT两种部署思路,一是基于虚拟化架构的面向物联网的整体解决方案,在大量连接、小数据包、节电等需求下,NB-IoT与LTE话务模型及功能差异大,核心网倾向于独立部署;二是基于全覆盖800MHz LTE网络部署NB-IoT,基站同时支持LTE和NB-IoT(NB-IoT与800MHzLTE基站共享基带、射频及天馈资源)。
而中国联通也从2015年起开展了NB-IoT业务试点及试验,并计划在2017年推进规模应用部署以及LTE-eMTC新技术试验。针对NB-IoT的业务承载策略,核心网部署等关键问题,中国联通表示在2016年底会规模试点,以加快NB-IoT产业的发展。据了解,从2015年2月到2016年上半年,中国联通推出了物联网智能水表原型机,在上海建成并开发了全球第一个NB-IoT新技术示范点,在广东等地持续推进业务探索。从2016年下半年到2017年,中国联通计划建设6个NB-IoT外场试点,进行N900&1800大规模试验验证,并逐步规模商用。
NB-IOT生态圈初步成型
如今,围绕NB-IOT的生态已初步成型,并在持续扩大中,拥抱万物互联的条件开始成熟。在网络设备供应商层面,华为、爱立信等领导者均已推出了基于NB-IOT的端到端解决方案。
在业界,对于物联网标准的发展,华为的推进最早。2014年5月,华为提出了窄带技术NB M2M;2015年5月融合NB OFDMA形成了NB-CIOT;7月份,NB-LTE跟NB-CIOT进一步融合形成NB-IOT;在技术方面,华为在9月初的2016全连接大会上,展示了端到端的NB-IoT解决方案,并在2016年巴塞罗那智慧城市大会上,宣布和沃达丰在西班牙开展的窄带物联网技术预标准的第一个商用计划正式启动。而在网络方面,2016年12月,挪威Telia和华为在挪威奥斯陆发布北欧区域首个NB-IoT网络,并发布了全球首个基于NB-IoT的智能农业业务,这代表了NB-IoT这项新产业革命技术开始进入实践部署。
另一通信巨头中兴通讯也加大了物联网端到端解决方案的研发投入,与国内运营商合力推进NB-IoT的发展。在刚刚结束的乌镇世界互联网大会上,中兴通讯提供从芯片、模组、无线网络、核心网到业务平台的端到端方案,联合当地运营商共同展示了基于NB-IoT技术的物联网应用。
而英特尔作为一家芯片厂商针对物联网的不同应用场景为产业链提供了完整的端到端的解决方案。今年6月份,英特尔和爱立信一同在上海的NWC上完成了全球首个基于最新的蜂窝技术的端到端的窄带物联网的演示。
在国际上,据外媒报道称,韩国运营商KT已经与三星电子、Ericsson-LG以及诺基亚扩大了合作协议,将在2017年上半年建立全国性NB-IoT网络。KT希望在2017年3月之前通过NB-IoT网络覆盖韩国85个城市,并在6月份扩大到全国,同时实现其商业化服务。
2016年下半年,随着NB-IoT标准的稳步进行,各大通信巨头纷纷开始抢滩物联网,NB-IoT商用之路逐步提速。业内人士预计2017年或将成NB-IoT规模商用元年。
未来已来 NB-IoT产业蓄势待发
当前,从移动互联网到万物互联的演进正在加速,窄带物联网(NB-IoT)成为了物联网发展的新驱动力。据GSMA预测,到2020年全球互联设备将会到达270亿,其中100亿为移动连接设备。随着NB-IoT商用脚步的加速,窄带物联网将在未来出现爆炸式增长。
目前,全球主要的电信运营商和通信设备公司都在着手布局NB-IoT技术,共同催熟NB-IoT技术和商业应用的成熟,合力推进端到端产业的的快速落地,这一切意味着NB-IoT已经具备初步商用的基础。万事具备,只欠东风,NB-IoT产业蓄势待发,即将开启万物互联的大时代。
NB-IoT移动物联网系统现状、发展
来源:5G(ID:angmobile),作者:张万春,陆婷,高音
摘要:通过与现有LTE系统对比,认为窄带物联网(NB-IoT)针对物理层、空口高层、接入网、核心网引入的各项优化特性能够很好地满足物联网低功耗、低成本、深度覆盖的典型需求。NB-IoT在标准体系统一、扩展能力上具有巨大优势,必将成为物联网技术及产业链发展、物联网应用在全球部署的有力推动者。具体地,本文介绍了:NB-IoT网络架构、NB-IoT 物理层特性(下行与上行链路)、NB-IoT空口高层特性、NB-IoT接入网特性、NB-IoT核心网特性、NB-IoT的后续演进与未来发展。
物联网应用发展已经超过10年,但采用的大多是针对特定行业或非标准化的解决方案,存在可靠性低、安全性差、操作维护成本高等缺点。基于多年的业界实践可以看出,物联网通信能否成功发展的一个关键因素是标准化。
与传统蜂窝通信不同,物联网应用具有支持海量连接数、低终端成本、低终端功耗和超强覆盖能力等特殊需求。这些年来,不同行业和标准组织制订了一系列物联网通信方面的标准,例如针对机器到机器(M2M)应用的码分多址(CDMA)2000 优化版本,长期演进(LTE)R12 和R13 的低成本终端category0及增强机器类型通信(eMTC),基于全球移动通信系统(GSM)的物联网(IoT)增强等,但从产业链发展以及技术本身来看,仍然无法很好满足上述物联网应用需求。其他一些工作于免授权频段的低功耗标准协议,如LoRA、Sigfox、Wi-Fi,虽然存在一定成本和功耗优势,但在信息安全、移动性、容量等方面存在缺陷,因此,一个新的蜂窝物联网标准需求越来越迫切。
在这个背景下,第三代合作伙伴计划(3GPP)于2015年9月正式确定窄带物联网(NB-IoT)标准立项,全球业界超过50家公司积极参与,标准协议核心部分在2016年6月宣告完成,并正式发布基于3GPP LTE R13版本的第1套NB-IoT标准体系。随着NB-IoT标准的发布,NB-IoT系统技术和生态链将逐步成熟,或将开启物联网发展的新篇章。
NB-IoT系统预期能够满足在180 kHz的传输带宽下支持覆盖增强(提升20 dB的覆盖能力)、超低功耗(5 Wh电池可供终端使用10年)、巨量终端接入(单扇区可支持50000个连接)的非时延敏感(上行时延可放宽到10 s以上)的低速业务(支持单用户上下行至少160 bit/s)需求。NB-IoT基于现有4G LTE系统对空口物理层和高层、接入网以及核心网进行改进和优化,以满足上述预期目标。
一、NB-IoT 网络架构
NB-IoT系统采用了基于4G LTE/演进的分组核心网(EPC)网络架构,并结合NB-IoT系统的大连接、小数据、低功耗、低成本、深度覆盖等特点对现有4G网络架构和处理流程进行了优化。
NB-IoT 的网络架构如图1 所示,包括:NB-IoT 终端、演进的统一陆地无线接入网络(E-UTRAN)基站、归属用户签约服务器(HSS)、移动性管理实体(MME)、服务网关(SGW)、公用数据网(PDN)网关(PGW)、服务能力开放单元(SCEF)、第三方服务能力服务器(SCS)和第三方应用服务器(AS)。和现有4G 网络相比,NB-IoT网络主要增加了业务能力开放单元(SCEF)来优化小数据传输和支持非IP数据传输。为了减少物理网元的数量,可以将MME、S-GW 和P-GW 等核心网网元合一部署,称之为蜂窝物联网服务网关节点(C-SGN)。
图1   NB-IoT网络架构
为了适应NB-IoT系统的需求,提升小数据的传输效率,NB-IoT系统对现有LTE处理流程进行了增强,支持两种优化的小数据传输方案,包括控制面优化传输方案和用户面优化传输方案。控制面优化传输方案使用信令承载在终端和MME之间进行IP数据或非IP数据传输,由非接入承载提供安全机制;用户面优化传输方案仍使用数据承载进行传输,但要求空闲态终端存储接入承载的上下文信息,通过连接恢复过程快速重建无线连接和核心网连接来进行数据传输,简化信令过程。
二、NB-IoT 系统特性
1、NB-IoT 物理层特性
NB-IoT系统支持3种操作模式:独立操作模式、保护带操作模式及带内操作模式。①独立操作模式:利用目前GSM/EDGE无线接入网(GERAN)系统占用的频谱,替代已有的一个或多个GSM载波;②保护带操作模式:利用目前LTE 载波保护带上没有使用的资源块;③带内操作模式:利用LTE载波内的资源块。
(1)NB-IoT下行链路
NB-IoT系统下行链路的传输带宽为180 kHz,采用了现有LTE相同的15 kHz的子载波间隔,下行多址方式(采用正交频分多址(OFDMA)技术)、帧结构(时域由10个1 ms子帧构成1个无线帧,但每个子帧在频域只包含12个连续的子载波)和物理资源单元等也都尽量沿用了现有LTE的设计。
针对180 kHz下行传输带宽的特点以及满足覆盖增强的需求,NB-IoT系统缩减了下行物理信道类型,重新设计了部分下行物理信道、同步信号和参考信号,包括:重新设计了窄带物理广播信道(NPBCH)、窄带物理下行共享信道(NPDSCH)、窄带物理下行控制信道(NPDCCH),窄带主同步信号(NPSS)/窄带辅主同步信号(NSSS)和窄带参考信号(NRS);不支持物理控制格式指示信道(子帧中起始OFDM符号根据操作模式和系统信息块1(SIB1)中信令指示)和不支持物理混合重传指示信道(采用上行授权来进行窄带物理上行共享信道(NPUSCH)的重传);并在下行物理信道上引入了重复传输机制,通过重复传输的分集增益和合并增益来提升解调门限,更好地支持下行覆盖增强。
为了解决增强覆盖下的资源阻塞问题(例如,为了最大20 dB覆盖提升需求,在带内操作模式下,NPDCCH大约需要200~350 ms重复传输,NPDSCH大约需要1200~1900 ms重复传输,如果资源被NPDCCH或NPDSCH连续占用,将会阻塞其他终端的上/下行授权或下行业务传输),引入了周期性的下行传输间隔。
(2)NB-IoT上行链路
NB-IoT系统上行链路的传输带宽为180 kHz,支持2种子载波间隔:3.75 kHz 和15 kHz。对于覆盖增强场景,3.75 kHz子载波间隔比15 kHz子载波间隔可以提供更大的系统容量,但是,在带内操作模式场景下,15 kHz子载波间隔比3.75 kHz子载波间隔有更好的LTE兼容性。
上行链路支持单子载波和多子载波传输,对于单子载波传输,子载波间隔可配置为3.75 kHz或15 kHz;对于多子载波传输,采用基于15 kHz的子载波间隔,终端需要指示对单子载波和多子载波传输的支持能力(例如,通过随机接入过程的msg1或msg3指示)以便基站选择合适的方式。无论是单子载波还是多子载波,上行都是基于单载波频分多址(SC-FDMA)的多址技术。对于15 kHz子载波间隔,NB-IoT上行帧结构(帧长和时隙长度)和LTE相同;对于3.75 kHz子载波间隔,NB-IoT新定义了一个2 ms长度的窄带时隙,一个无线帧包含5个窄带时隙,每个窄带时隙包含7个符号并在每个时隙之间预留了保护间隔,用于最小化NB-IoT符号和LTE探测参考信号(SRS)之间的冲突。
NB-IoT系统也缩减了上行物理信道类型,重新设计了部分上行物理信道,包括:重新设计了窄带物理随机接入信道(NPRACH)、NPUSCH;不支持物理上行控制信道(PUCCH)。
为了更好地支持上行覆盖增强,NB-IoT系统在上行物理信道上也引入了重复传输机制。由于NB-IoT终端的低成本需求,配备了较低成本晶振的NB-IoT终端在连续长时间的上行传输时,终端功率放大器的热耗散导致发射机温度变化,进而导致晶振频率偏移,严重影响到终端上行传输性能,降低数据传输效率。为了纠正这种频率漂移,NB-IoT中引入了上行传输间隔,让终端在长时间连续传输中可以暂时停止上行传输,并且利用这段时间切换到下行链路,利用NPSS/NSSS NRS信号进行同步跟踪以及时频偏补偿,通过一定时间补偿后(比如频偏小于50Hz),终端将切换到上行继续传输。
2、NB-IoT空口高层特性
NB-IoT系统在空口高层主要是对现有LTE的控制面和用户面机制进行优化或简化,达到降低系统复杂度和终端功耗,节省开销以及支持覆盖增强和更有效的小数据传输的目的。
(1)RRC 信令流程优化
NB-IoT系统相比于LTE系统,在功能上做了大幅简化,相应的无线资源控制(RRC)处理过程也明显减少,特别是对连接态移动性功能的简化,不支持连接态测量上报和切换。对于控制面优化传输方案,空口信令流程被大幅缩减,最少只需3条空口RRC消息来建立无线信令承载并进行数据传输,无需激活接入层安全和无需建立无线数据承载。
对于用户面优化传输方案,可以在首次接入网络时激活接入层安全,建立无线信令和数据承载,通过连接挂起过程在终端和基站存储终端的接入层上下文,挂起无线承载;后续通过连接恢复过程恢复无线承载并重新激活接入层安全来进行数据传输。通过连接恢复过程,空口信令流程也被大幅缩减。
(2)系统消息优化
由于NB-IoT系统功能的简化,系统消息的类型减少且每个系统消息需要包含的信息也相应减少,而物理层广播信道的重新设计使得NB-IoT系统的主信息块(MIB)消息也不同于LTE系统,因此,在NB-IoT系统中最终重新定义了一套系统消息,包括窄带主信息块(MIB-NB)、窄带主信息块1(SIB1-NB)~SIB5-NB、SIB14-NB、SIB20-NB等8条系统消息,各条系统消息基本沿用了LTE相应系统消息的功能。
为了提升资源效率,NB-IoT中系统消息的调度方式由LTE采用的动态调度改为半静态调度,包括:SIB1-NB的调度资源由MIB-NB指定,其他SIB的时域资源由SIB1-NB指定。
为了降低终端接收系统消息带来的功耗和网络发送系统消息带来的资源占用,NB-IoT系统的系统消息处理采用了以下机制,包括:系统消息的有效时间从LTE的3个小时扩展为24个小时,MIB-NB 消息中携带系统消息改变的指示标签,SIB1-NB中携带了针对每个系统信息(SI)改变的单独的指示标签,连接态终端不读取系统消息,允许通过NPDCCH的控制信息直接指示系统消息变更等。
(3)寻呼优化
为了满足NB-IoT终端超长待机时间的要求,NB-IoT系统的寻呼机制也进行了优化,支持以超帧为单位(1个超帧包含1 024个无线帧)的长达3个小时的扩展非连续接收(DRX);为了提升终端在扩展DRX周期内的寻呼接收成功率,NB-IoT系统引入了寻呼传输窗(PTW),允许在PTW内多次寻呼终端。
(4)随机接入过程优化
针对覆盖增强需求,NB-IoT系统采用了基于覆盖等级的随机接入;终端根据测量到的信号强度判断当前所处的覆盖等级,并根据相应的覆盖等级选择合适的随机接入资源发起随机接入。为了满足不同覆盖等级下的数据传输要求,基站可以给每个覆盖等级配置不同的重复次数、发送周期等,例如,处于较差覆盖等级下的终端需要使用更多的重复次数来保证数据的正确传输,但同时为了避免较差覆盖等级的终端占用过多的系统资源,可能需要配置较大的发送周期。
(5)接入控制
物联网终端数量巨大,需要有效的接入控制机制来保证控制终端的接入和某些异常上报数据的优先接入。NB-IoT系统的接入控制机制充分借鉴了LTE 系统的扩展接入限制(EAB)机制(SIB14)和随机接入过程的Backoff机制,并通过在MIB-NB中广播是否使能接入控制的指示降低终端尝试读取的SIB14-NB的功耗。
(6)数据传输机制优化
3、NB-IoT接入网特性
NB-IoT系统的接入网基于现有LTE的X2接口和S1接口进行优化。X2接口用以在eNodeB和eNodeB之间实现信令和数据交互。在NB-IoT系统中,X2接口在基于R13 的版本不支持eNodeB间的用户面操作,主要是在控制面引入了新的跨基站用户上下文恢复处理,在用户面优化传输方案下,挂起的终端移动到新基站发起RRC连接恢复过程,携带先前从旧基站获得的恢复ID,新基站在X2接口向旧基站发起用户上下文获取流程,从旧基站获取终端在旧基站挂起时保存的用户上下文信息,以便在新基站上将该UE快速恢复。
S1接口的控制面用以实现eNodeB和MME之间的信令传递,S1接口的用户面用以实现eNodeB和SGW之间的用户面数据传输。在NB-IoT系统中,S1接口引入的新特性主要包括:无线接入技术(RAT)类型上报(区分NB-IoT或E-TURAN接入)、UE无线能力指示(例如,允许MME通过下行NAS传输消息向eNodeB发送用户设备(UE)的无线能力)、优化信令流程支持控制面优化传输方案,以及为用户面优化传输方案在S1接口引入连接挂起和恢复处理等。
4、NB-IoT核心网特性
NB-IoT系统的核心网优化了现有LTE/EPC在MME、SGW、PGW及归属签约用户服务器(HSS)之间的各个接口(包括S5/S8/S10/S11/S6a 等)和功能,并针对新引入的业务能力开放单元(SCEF)增加了MME和SCEF之间的T6接口以及HSS和SCEF之间的S6t接口和相应功能。
NB-IoT系统的核心网必须支持的功能包括:支持控制面优化传输方案和用户面优化传输方案的处理及提供必要的安全控制(例如,控制面优化传输方案使用非接入层安全,用户面优化传输方案必须支持接入层安全),支持控制面优化传输方案和用户面优化传输方案间的切换(例如,S11-U和S1-U传输方式间的切换),支持与空口覆盖增强配合的寻呼,支持非IP数据经过PGW(SGi 接口实现隧道)和SCEF传输(基于T6接口),对仅支持NB-IoT的UE实现不需要联合附着的短信服务(SMS),以及支持附着时不创建PDN连接。
对于使用控制面优化传输方案的IP数据传输,MME在创建PDN连接请求中会指示SGW建立S11-U隧道。当SGW收到下行数据时,如果S11-U连接存在,SGW将下行数据发给MME,否则触发MME执行寻呼。
对于使用控制面优化传输方案的非IP数据传输,如果采用基于SGi的非IP的PDN连接,MME需要和SGW建立基于通用分组无线服务技术(GPRS)隧道协议用户面协议(GTP-U)的S11-U连接,同时PGW不为终端分配IP地址或者即使为终端分配了IP地址也不发给终端,PG和外部SCS/AS间使用隧道通信;如果采用基于T6的非IP的PDN连接中,MME需要和SCEF建立基于Diameter的T6连接。对上行非IP小数据传输,MME从eNodeB接收的网络附属存储(NAS)数据包中提取上行非IP小数据包,封装在GTP-U数据包中发送给SGW及PGW,或封装在Diameter消息中发送给SCEF。对下行非IP 小数据传输,MME从GTP-U数据包中提取下行非IP小数据包,或从Diamter消息中提取下行非IP小数据包,然后封装在NAS数据包中通过eNodeB发送给UE。
为了支持用户面传输优化方案,NB-IoT核心网各网元(MME、SGW等)同样需要支持连接挂起和恢复的相应操作。对用户面传输优化方案,数据传输机制上与LTE/EPC机制相似,仅支持IP数据传输。
三、NB-IoT的后续演进、未来发展
四、结束语
NB-IoT标准为了满足物联网的需求应运而生,中国市场启动迅速,中国移动、中国联通、中国电信都计划2017年上半年商用,并且已经开始实验室测试。在运营商的推动下,NB-IoT网络将成为未来物联网的主流通信网之一,随着应用场景的扩展,NB-IoT网络将会不断演进以满足各种不同需求。
张万春:中兴通讯股份有限公司无线研究院院长;主要从事LTE、5G相关无线产品研发;获得国家科技进步奖特等奖1项,国家科技进步二等奖1项,深圳市科技进步一等奖1项。
陆   婷:中兴通讯股份有限公司技术预研高级系统工程师;主要从事无线通信系统协议研究及标准推进,先后参与3G/4G/5G多个标准版本制订工作;已申请发明专利30项。
高   音:中兴通讯股份有限公司无线通信标准预研系统工程师;主要从事4G 和5G 标准技术研究和标准推进工作;曾任SON国家重大专项课题项目负责人;已发表论文4篇,3GPP会议提案200多篇。
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
史上最全的NB-IoT知识,每个通信人都应该了解的...
NB-IoT详细解读
看完此文还不懂NB-IoT,你就过来掐死我吧...
5G很遥远,但NB
最全科普!你一定要了解的NB
物联网崛起,真的只能靠NB
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服