打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
解三角形中的取值范围问题探究

北京市第十二中学高中部(100071) 刘 刚

翻阅近些年的各类考题,发现解三角形中的取值范围问题比比皆是,解决这类问题通常要借助三角函数的有界性、均值不等式、导数等知识处理,有时也可以构造图形,从几何直观角度理解与认识.下面结合一道具体题目,谈一谈这些方法的应用.

题目 已知锐角ΔABC 中,a=1,A=

求b2+c2 的取值范围.

思路1 借助正弦定理,把b2+c2 转化为三角函数,然后分析角的取值范围,最后借助三角函数的有界性解决.

解法1 由正弦定理,得

所以
于是

因为ΔABC 为锐角三角形,所以

由此得
<sin(2B-
)≤1,于是
<b2+c2≤2,故b2+c2 的取值范围是(
,2].

点评 以上化简与变形要熟练掌握三角公式,同时转化的目标要明确:把所求代数式化为A sin(ωx+φ)+k,其中ω>0(或A cos(ωx+φ)+k,其中ω>0)的形式,这样便于借助三角函数的有界性解决范围问题.同时,本题要特别注意角度B 的取值范围,有不少同学不加思考,认为由锐角三角形可得0<B<

这是片面的,还应该考虑
这样才能得到B 的准确范围.

变式1 已知a=(2 cos x,2 sin x),b=(sin(x-

),cos(x-
)),函数f(x)=cos〈a,b〉.

解法2 因为a=1,A=

所以由余弦定理,得

(2)若锐角ΔABC 的三个内角A,B,C 的对边分别是a,b,c,且f(A)=1,求

的取值范围.

解 (1) 略.(2) 由已知可得f(x)=sin(2x-

),所以f(A)=sin(2A-
)=1,解得2A-
=2kπ+
,即A=kπ+
k ∈Z.又0<A<π,所以A=
由正弦定理,得

因为ΔABC 为锐角三角形,所以

由此得
<sin(B+
)≤1,即
≤2,故
的取值范围是

思路2 设

=t,先借助余弦定理把b2+c2 转化为关于t 的函数,然后找出t 的取值范围,最后借助导数解决.

点评 由于所求代数式b2+c2 有两个未知量,因此需借助余弦定理、换元等方式转化为一个未知量,接下来构造函数并借助导数研究,体现了函数与方程的思想.

因为ΔABC 是锐角三角形,所以

将①代入,解得
则t ∈
由①,得c2=
所以b2+c2=

设f(t)=

则f′(t)=
于是当t ∈
时,f′(t)>0,f(t)单调递增;当t ∈(1,2)时,f′(t)<0,f(t)单调递减,所以当t=1 时,f(t)有最大值为2.又
所以
<f(t)≤2,即
<b2+c2≤2,故b2+c2 的取值范围是

(1)求函数f(x)的零点;

变式2 (2019年高考全国Ⅲ卷理科第18 题) ΔABC的内角A,B,C 的对边分别为a,b,c,已知a sin

=b sin A.

(1)求B;

(2)若ΔABC 为锐角三角形,且c=1,求ΔABC 面积的取值范围.

解 (1)略,B=

;(2)因为c=1,B=
,所以由余弦定理,得

因为ΔABC 为锐角三角形,所以

将②代入,解得
<a<2.因为ΔABC的面积SΔABC=
所以
<SΔABC<
故ΔABC 面积的取值范围是

思路3 借助正(余)弦定理、均值不等式、三角函数的性质求解.

解法3 因为a=1,A=

所以由余弦定理,得a2=1=b2+c2-bc≥ b2+c2-
解得b2+c2≤2,当且仅当b=c 时等号成立.因为B 是锐角,所以b2=c2+1-2c cos B<c2+1,即c2>b2-1,于是b2+c2>2b2-1 恒成立.由正弦定理,得
所以b=
于是b2+c2>
因为ΔABC 为锐角三角形,所以
由此得
故b2+c2的取值范围是

点评 解法3 首先借助余弦定理以及均值不等式b2+c2≥2bc 得到了b2+c2≤2.怎样求b2+c2 的下确界呢? 先通过放缩得到不等式b2+c2>2b2-1 恒成立,接下来借助正弦定理得到b=

sin B,最后根据三角函数的性质求解,体现了转化思想.

变式3 在ΔABC 中,B=

,b=1,D 为边AC 的中点,求BD 的取值范围.

解 由已知得BD 是ΔABC 的中线,所以(2BD)2+AC2=2(BA2+BC2),把b=1 代入,得

因为B=

,b=1,所以由余弦定理,得a2+c2-ac=1,于是a2+c2=ac+1≤
+1,解得a2+c2≤2,代入③,解得BD≤
当且仅当a=c 时等号成立.因为ac>0,所以a2+c2=ac+1>1,代入③,解得BD>

综上,

<BD≤
故B D 的取值范围是

思路4 根据a=1,A=

所以可得点A 在一段圆弧上运动,由此借助图形求解.

解法4 如图1,作ΔABC 的外接圆O,因为a=1,A=

且ΔABC 是锐角三角形,所以点A 在劣弧
上运动(不包括端点).

由余弦定理,得b2+c2=bc+1,且bc=

过点O 作BC 的垂线交劣弧
于点A0,交BC 于点D,则D 为BC 的中点,所以A0D 就是点A 到BC 距离的最大值,此时ΔABC 为等边三角形,求得ΔABC 面积的最大值为
又当点A 在A1 或A2 处时,ΔABC 的面积为
于是
<bc≤1,由此得
<b2+c2≤2,故b2+c2 的取值范围是

点评 由于b2+c2 的几何意义不易直接体现,所以联想余弦定理、三角形面积公式进行转化,即b2+c2=bc+1,且

接下来只需研究ΔABC 面积的取值范围即可,解法体现了直观性与问题的本质.

图1

图2

图3

变式4 如图2,已知ΔABC 是以AC 为斜边的等腰直角三角形,D 为ΔABC 外的一点,且CD=2AD=2,则ΔBCD 面积的最大值为____.

解 如图3,以C 为原点,CD 所在直线为x 轴建立平面直角坐标系,则D(2,0).过点B 作x 轴的垂线,垂足为E,过点A 作BE 的垂线,垂足为F,由已知可得ΔBCE ∽=ΔABF,所以CE=BF,BE=AF.

设B(x,y),则点A 的坐标为(x+y,y-x).因为AD=1,所以(x+y-2)2+(y-x)2=1,化简,得(x-1)2+(y-1)2=

故点B 的轨迹是以点(1,1) 为圆心,半径为
的圆.因为SΔBCD=
且|yB|≤
+1,所以SΔBCD≤
+1,当点B 的坐标为(1,
+1)时等号成立,所以ΔBCD 面积的最大值为

以上借助三角函数的有界性、导数、均值不等式、几何图形等方法解决了一道三角形中的取值范围问题,这些方法均是常用方法.在解决三角形中的取值范围问题时,由于方法多,所以不能局限于某一种解法,应鼓励学生从不同角度探索,培养学生的发散性思维.只有这样,才会串联起所学知识,形成知识网络,进而落实“四基”与“四能”,数学核心素养的提升也就指日可待了.

参考文献

[1]刘刚.一类三角试题的解法探究[J].数学通讯(上半月),2017(5):12-16.

[2]赵毅.2019年高考全国卷Ⅲ第18 题[J].数理天地(高中版),2020(1):20-21.

[3]刘刚,赵毅.一道习题的求解与拓展[J].数理天地(高中版),2016(9):2-3.

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
2023高考数学逆袭系列之微专题3 三角中的最值、范围问题
高中数学知识点总结正弦定理与余弦定理
数学_高考数学解三角形复习资料_12页
2024年高考数学一轮复习(新高考版) 第4章 必刷大题9 解三角形
已知锐角三角形的两边长为2和3,那么第三边长x的取值范围是______.
2012高考复习专题限时集训:解三角形
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服