打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
【基础天文No.2】太阳系之太阳


基础系例说明:启动|基础天文|基础物理|系例科普

第一期:【基础天文No.1】太阳系之太阳系

基础天文之——太阳


太阳或日是位于太阳系中心的恒星,它几乎是热等离子体与磁场交织著的一个理想球体。其直径大约是1,392,000(1.392×106)公里,相当于地球直径的109倍;质量大约是2×1030千克(地球的330,000倍),约占太阳系总质量的99.86%。 从化学组成来看,太阳质量的大约四分之三是氢,剩下的几乎都是氦,包括氧、碳、氖、铁和其他的重元素质量少于2%。

太阳的恒星光谱分类为G型主序星(G2V)。虽然它是白色的,但因为在可见光的频谱中以黄绿色的部分最为强烈,从地球表面观看时,大气层的散射使天空成为蓝色,所以它呈现黄色,因而被非正式的称为“黄矮星”。 光谱分类标示中的G2表示其表面温度大约是5778K(5505°C),V则表示太阳像其他大多数的恒星一样,是一颗主序星,它的能量来自于氢聚变成氦的核聚变反应。太阳的核心每秒钟燃烧6.2亿吨的氢。太阳一度被天文学家认为是一颗微小平凡的恒星,但因为银河系内大部分的恒星都是红矮星,现在认为太阳比85%的恒星都要明亮。太阳的绝对星等是 +4.83,但是由于其非常靠近地球,因此从地球上看来,它是天空中最亮的天体,视星等达到−26.74。太阳高温的日冕持续的向太空中拓展,创造的太阳风延伸到100天文单位远的日球层顶。这个太阳风形成的“气泡”称为太阳圈,是太阳系中最大的连续结构。

太阳目前正在穿越银河系内部边缘猎户臂的本地泡区中的本星际云。在距离地球17光年的距离内有50颗最邻近的恒星系(最接近的一颗是红矮星,被称为比邻星,距太阳大约4.2光年),太阳的质量在这些恒星中排在第四。 太阳在距离银河中心24,000至26,000光年的距离上绕着银河公转,从银河北极鸟瞰,太阳沿顺时针轨道运行,大约2.25亿至2.5亿年遶行一周。由于银河系在宇宙微波背景辐射(CMB)中以550公里/秒的速度朝向长蛇座的方向运动,这两个速度合成之后,太阳相对于CMB的速度是370公里/秒,朝向巨爵座或狮子座的方向运动。

地球围绕太阳公转的轨道是椭圆形的,每年1月离太阳最近(称为近日点),7月最远(称为远日点),平均距离是1.496亿公里(天文学上称这个距离为1天文单位)。以平均距离算,光从太阳到地球大约需要经过8分19秒。太阳光中的能量通过光合作用等方式支持着地球上所有生物的生长,也支配了地球的气候和天气。人类从史前时代就一直认为太阳对地球有巨大影响,有许多文化将太阳当成神来崇拜。人类对太阳的正确科学认识进展得很慢,直到19世纪初期,杰出的科学家才对太阳的物质组成和能量来源有了一点认识。直至今日,人类对太阳的理解一直在不断进展中,还有大量有关太阳活动机制方面的未解之谜等待着人们来破解。 现今,太阳已经45亿岁了。

太阳是一颗G型主序星,占太阳系总质量的99.8632%。太阳的形状接近理想的球体,估计扁率只有900万分之一,这意味着极直径和赤道直径的差别不到10公里。由于太阳是由等离子体组成,并不是固体,所以他的赤道转得比极区快。这种现象称作较差自转,其原因是从太阳核心向外伸展的温度变化,引发的太阳物质的对流运动。这些物质携带着一部分从黄道北极看是逆时钟的太阳角动量,因而重新分配了角速度。实际的转动周期在赤道大约是25.6天,在极区是33.5天,但是因为地球在环绕太阳时,不断改变公转轨道的角度,使得太阳赤道自转的视运动大约是28天。这种缓慢旋转作用的离心力在赤道的效应不及太阳引力的1,800万分之一,即使是行星产生的潮汐力也因为太微弱而对太阳的形状起不了作用,但大质量的木星仍使核心偏离中心达一个太阳半径。

太阳是富金属星。太阳的形成可能是一颗或多颗邻近的超新星激震波所致。这个猜测是基于太阳系中高度的重元素含量。在太阳系中,重金属元素如金和铀的含量远高于被称为贫金属恒星的丰度。表面上看来这些元素只会由超新星产生的吸能核反应,或第二代恒星内部的核迁变而产生。

太阳没有像固态行星一样明确的界线,并且它外面的气体密度是随着中心距离的增加呈指数下降。然而太阳也有明确的结构划分。一般定义太阳的半径为从它的中心到光球边缘的距离。光球只是气体层的上层,因为太冷或太薄而辐射出大量可见光,并且因此成为肉眼最容易看见的表面。

太阳的内部不能被直接观察到,对电磁辐射也是不透明的。但是,正如地球上通过研究地震波来揭露地球的内部结构,日震学中也可借由在太阳内部的压力波(人耳听不见的次声波)来测量和明确太阳内部的结构。太阳的深层内在构造也可以通过电脑建模等理论工具来研究。

核心

太阳的核心是指距离太阳的中心不超过太阳半径的五分之一或四分之一的区域,核心内部的物质密度高达150 g/cm3,大约是水密度的150倍,温度接近1,360万K。相较之下,太阳表面的温度大约只有5,800K。根据太阳和太阳风层探测器任务最近的资料分析,太阳核心的自转速率比辐射带等其它区域要快。太阳形成后的大部分的时间里,核聚变的能量是经过一系列被称为质子-质子链反应的过程产生的;这个过程将氢变成氦,只有少于2%的氦是经由碳氮氧循环产生的。

核心是太阳内唯一能经由核聚变产生大量热能的区域,99%的能量产生在太阳半径的24%以内,而在30%半径处,聚变反应几乎完全停止。太阳的外层只是被从核心传出的能量加热。在核心经由核聚变产生的能量首先需穿过由内到外接连的多层区域,才能到达光球层,然后化为光波或粒子的动能,散逸到外层的宇宙空间去。

太阳核心每秒大约进行着9.2×1037次质子-质子链反应。这个反应是将4个自由的质子(氢原子核)融合成氦原子核(α粒子),每秒大约有3.7×1038个质子成为α粒子(太阳拥有的自由质子大约有8.9×1056个),相当于大约每秒6.2×1011千克。每次氢原子核聚合成氦时,大约会有0.7%的质量转化成能量。因此,太阳的质能转换速率为每秒钟426万吨(质量转变为辐射能的形式离开,参考质能等效性),释放出384.6 佑瓦特(3.846×1026 W)的能量,这相当于每秒钟产生919.2×1010 万吨TNT炸药爆炸的能量。

太阳核心的核聚变功率随着与太阳中心的距离增大而减小,理论模型估计,在太阳的中心,核聚变的功率密度大约是276.5 W/m3。是成年人平均单位体积消耗功率的1/10倍。太阳的巨大功率输出不是由于其能量输出密度高,而是因为它规模巨大。

太阳核心的核聚变是在自我修正下达到平衡:速率只要略微提升,就会造成核心的温度上升,压强增大,更能抵抗外围物质的压力,因此核心会膨胀,从而降低核聚变速率,修正之前核聚变速率增加所造成的扰动;而如果反应速率稍微下降,就会导致温度略微下降,压强降低,从而核心会收缩,使核聚变的速率又再提高,回复到它之前的水平。

核聚变产生的γ射线(高能量的光子流)从太阳核心释放出来后,只要经过几微米就会被太阳中的等离子体吸收,然后再以较低的能量随机地辐射向各个方向。因此,在不断反复的吸收和再辐射中,光子流要经过漫长的时间才能到达太阳表面。估计每个光子抵达太阳表面需要10,000年至170,000年的时间。

在穿过对流带,进入透明的光球表面时,光子就以可见光的型态散逸。每一股γ射线在核心产生的在逃逸入太空之前,都已经转化成数百万个可见光频率的光子。核心的核聚变时也释放出中微子,但是与光子不同的是它很难与其它的物质相互作用,因此几乎是立刻就从太阳表面逃逸出去。多年来,测量到来自太阳的中微子数量都只有理论数值的三分之一,因而产生了太阳中微子问题。这个差异直到2001年发现中微子振荡才获得解决:太阳发出的中微子数量一如理论的预测,但是中微子探测器侦测到的少了2⁄3,这是因为在被侦测时中微子改变了它们的味。

辐射带

从大约0.25至0.7太阳半径处,太阳物质是热且稠密的,只以热辐射就将将核心的炙热充分的向外转移。在这个区域内没有热对流;同时随着与中心距离的增加,温度也从7,000,000K降至2,000,000K,这种温度梯度小于绝热下降率,因此不会造成对流。能量的传输依赖辐射——氢和氦的离子发射的光子,但每个光子被其它的离子再吸收之前,只能传递很短的距离。从辐射带的底部至顶端的密度下降达到百倍(从20公克/立方公分降至只有0.2公克/立方公分)。

辐射带和对流带之间形成的一个过渡层叫差旋层(tachocline)。它是均匀旋转的辐射带和较差自转的对流带之间有着急遽转变工作状态的区域,结果造成巨大的切变——当接连的平面层滑过另一个时的条件。在上面的对流带发现的流体运动,从这一层的顶端至底部慢慢的消失,与辐射带顶段平静的特征相匹配。目前这还是一个假说(参见太阳发电机),在这一层内的磁发电机产生太阳的磁场。

对流带

太阳的外层,从它的表面向下至大约200,000公里(或是70%的太阳半径),太阳的等离子体已经不够稠密或不够热,不再能经由传导作用有效的将内部的热向外传送;换言之,它已经不够透明了。结果是,当热柱携带热物质前往表面(光球),产生了热对流。一旦这些物质在表面变冷,它会向下切入对流带的底部,再从辐射带的顶部获得更多的热量。在可见的太阳表面,温度已经降至5,700K,而且密度也只有0.2公克/立方米(大约是海平面密度的六千分之一)。

在对流带的热柱形成在太阳表面上非常重要的,像是米粒组织和超米粒组织。在对流带的湍流会在太阳内部的外围部分造成“小尺度”的发电机,这会在太阳表面的各处产生磁南极和磁北极。太阳的热柱是贝纳得穴流,因此往往像六角型的棱镜。

光球

太阳可见的表面,光球,在这一层下面的太阳对可见光是不透明,在光球之上可见光可以自由的传播到太空之中,而它的能量可以完全从太阳带走。透明度的变化是因为会吸收可见光的H−离子数量减少。相反的,我们看见的可见光是电子与氢再作用产生H−离子时产生的。 光球的厚度只有数十至数百公里的厚度,只是略比球的空气不透明了些。因为光球上半部分的温度比下半部的低,因此太阳盘面的影像会呈现中央比周围的边缘或周边明亮的现像,这一种现象称为周边昏暗。阳光有着近似于黑体的光谱,穿插着数千条来自光球之上稀薄的原子吸收线,指示其温度大约是6,000K。光球的粒子密度大约是1023米−3(大约是地球大气层在海平面粒子密度的0.37%,但是光球中的粒子是电子和质子,所以空气的平均质量只是58倍)。

在研究光球可见光谱的早期,发现有些吸收谱线不能符合地球上任何已知的化学元素。在1868年,诺曼·洛克假设这些吸收谱线是一种新元素造成的,他以希腊的太阳神为依据,将之命名为氦,而在25年之后才在地球上分离出氦元素。

大气层

大气层太阳光球以上的部分统称为太阳大气层,跨过整个电磁频谱,从无线电、可见光到伽马射线,都可以观察它们,分为5个主要的部分:温度极小区、色球、过渡区、日冕、和太阳圈。太阳圈,可能是太阳大气层最稀薄的外缘,并且延伸到冥王星轨道之外与星际物质交界,交界处称为日鞘,并且在那儿形成剪切的激波前缘。色球、过渡区、和日冕的温度都比太阳表面高,原因还没有获得证实,但证据指向阿尔文波可能携带了足够的能量将日冕加热。

温度极小区

太阳上温度最低的地区称为温度极小区,大约在光球上方500 公里,温度大约是4,100 K。这一部分的温度低到可以维持简单的分子,像是一氧化碳和水,并且可以从检出它们的吸收谱线。

色球

在温度极小区之上是一层大约2,000 公里厚,主导著谱线的吸收和发射。因为在日全食的开始和结束时可以看见彩色的闪光,因此称为色球,名字来自希腊的字根chroma,意思就是颜色。色球层的温度随着高度从底部逐步向上提升,接近顶端的温度大约在20,000 K 。在色球的上层部分,氦开始被部分的电离。

过渡区

在色球之上,是一层薄至大约只有200公里的过渡区,温度从色球顶端大约200,000K上升至接阶近1,000,000K的日冕温度。温度的上升使氦在过渡区很容易就被完全的电离,这可以大量减少等离子体的辐射冷却。过渡区没有明确的出现高度,它形成一种环绕着色球的光轮,外型很像针状体和暗条,并处于持续不断的浑沌运动。从地球表面很难看到过渡区,但在太空中使用对电磁频谱的超紫外线灵敏的仪气很容易观察到。

日冕

日冕是太阳向外扩展的大气层,它的体积比太阳本身大了许多。不断扩展的日冕在太空中形成太阳风,充满了整个的太阳系。日冕的低层非常靠近太阳的表面,粒子的密度环绕在1015–1016米−3,日冕和太阳风的平均温度大约是1,000,000–2,000,000 K;而在最高温度的区域是8,000,000–20,000,000 K。日冕的温度虽然很高,但密度很低,因此所含的热量很少。虽然还没有完整的理论可以说明日冕的温度,但至少已经知道有一部分热是来自磁重联。

太阳圈

太阳圈,从大约20太阳半径(0.1天文单位)到太阳系的边缘,这一大片环绕着太阳的空间充满了伴随太阳风离开太阳的等离子体。他的内侧边界是太阳风成为超阿耳芬波的那层位置-流体的速度超过阿耳芬波。因为讯息只能以阿耳芬波的速度传递,所以在这个界限之外的湍流和动力学的力量不再能影响到内部的日冕形状。太阳风源源不断的进入太阳圈之中并向外吹拂,使得太阳的磁场形成螺旋的形状,直到在距离太阳超过50天文单位之外撞击到日鞘为止。在2004年12月,航海家1号已穿越过被认为是日鞘部分的激波前缘。两艘航海家太空船在穿越边界时都侦测与记录到能量超过一般微粒的高能粒子。

磁场

太阳是磁力活跃的恒星,它支撑一个强大、年复一年在变化的磁场,并且大约每11年环绕着太阳极大期反转它的方向。太阳磁场会导致很多影响,称为太阳活动,包括在太阳表面的太阳黑子、太阳耀斑、和携带着物质穿越太阳系且不断变化的太阳风。太阳活动对地球的影响包括在高纬度的极光,和扰乱无线电通讯和电力。太阳活动被认为在太阳系的形成和演化扮演了很重要的角色。

太阳因为高温的缘故,所有的物质都是气体和等离子体,这使得太阳的转速可能在赤道(大约25天)较快,而不是高纬度(在两极约为35天)。太阳因纬度不同的较差自转造成它的磁场线随着时间而纠缠在一起,造成磁场圈,从太阳表面喷发出来,并触发太阳形成系距性的太阳黑子和日珥(参见磁重联)。随着太阳每11年反转它本身的磁场,这种纠缠创造了太阳发电机和11年的太阳磁场活动太阳周期。

太阳磁场朝太阳本体外更远处延伸,磁化的太阳风等离子体携带着太阳的磁场进入太空,形成所谓的行星际磁场。由于等离子体只能沿着磁场线移动,离开太阳的行星际磁场起初是沿着径向伸展的。因位在太阳赤道上方和下方离开太阳的磁场具有不同的极性,因此在太阳的赤道平面存在着一层薄薄的电流层,称为太阳圈电流片。太阳的自转使得远距离的磁场和电流片旋转成像是阿基米德螺线结构,称为派克螺旋。行星际磁场的强度远比太阳的偶极性磁场强大。太阳50-400μT的磁偶极(在光球)随着距离的三次方衰减,在地球的距离上只有0.1 nT。然而,依据太空船的观测,在地球附近的行星际磁场视这个数值的100倍,大约是5nT。

太阳黑子和太阳黑子周期

当使用适当的过滤观察太阳时,通常最能立刻看见的特征就是太阳黑子,因为那是温度较低而明确出现比周围黑暗的区域。太阳黑子是强磁场的区域,对流受到强量磁场的抑制,减少了从高热的内部传送到表面的能量。磁场造成大量的热进入日冕,形成的活动区是激烈的太阳耀斑和日冕物质抛射的来源。最大的太阳黑子有数万公里的直径。

在太阳上可以看见的太阳黑子数量并不是固定的,它以平均约11年的周期变化,形成所知的太阳周期。当太阳黑子周期进展时,太阳黑子的数量会增加,并且初系的位置也逐渐接近太阳的赤道,史波勒定律就是描述这种现象。太阳黑子通常都以磁性相异的形式成对出现,每一个太阳周期的前导黑子磁性会交替的改变,所以当一个太阳周期是磁北极前导,下一个太阳周期就是磁南极前导。

在过去大约250年观测的太阳黑子数量,显示出大约11年的太阳周期。

因为太阳的光度与磁场活动有直接的关系,太阳周期不仅对太空天气有很大的影响,对地球的气候也有重大的影响。太阳活动极小往往和低温连系再一起,而超过平均长度的周期则与高温相关联。在17世纪,太阳周期似乎完全停止了数十年,在这段期间只观测到少数几个太阳黑子。那个时代称为蒙德极小期或小冰期,欧洲经历了很冷的温度。分析树木的年轮发现更早的一些极小期,并且也显现出与全球的温度低于平均温度的期间相符合。

图文参考综合维基百科


于文末留言评论、建议、发表观点等




本文由“天文物理”载享推荐且有一定学习或参考价值、但其最终内容真实性自负。版权声明:“天文物理”刊载此文,仅为传递更多信息之目的,文章版权归原作者或媒体所有。本平台文章内容来源于网络且广泛…如若无意侵犯了你的权益请及时联系邮箱:bokeyuan@vip.qq.com  天文物理 将及时完善著权信息或删除等。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
太阳会进入休眠期吗?
太阳简史
科学家拍摄到1.5亿公里外太阳的高清表面,像人体细胞结构
如果太阳熄灭一个星期,会发生什么?
如果一个人能活着进入太阳中心,他会看到什么景象?
话说太阳系(2)-太阳
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服