打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
什么是金融数学?

什么是金融数学?
     
作  者:Tim Johnson
在英格兰和德国从事金融数学教学和研究    
翻  译:乔中华,香港理工大学应用数学系助理教授    
校  对:汤涛,香港浸会大学数学讲座教授    
掷骰子

我被金融数学所吸引的原因并不是对金融多感兴趣,而是因为喜欢那种在多变事物面前运筹帷幄的感觉。1564年卡尔达诺(Girolamo Cardano)在其Liber de Ludo Aleae一书中对于赌博道德学开始探讨,并且在该书中首次提到了概率论的观点。卡尔达诺曾评论道,对于赌客来说,知道一个骰子掷出6的概率是六分之一没多大意义,因为概率并不能预测未来。但如果衡量一场赌博是否公平公正,概率是具有很重要意义的;并且它对于做决策也非常有帮助。


掷骰子时的大数定律

除了帕斯卡(Pascal)的赌博(基本上讲的是,相信上帝存在不会使你失去任何东西),概率论的初期发展从卡尔达诺到伽利略和费马,从帕斯卡到丹尼尔.伯努利,都是由赌博问题所驱使的。这些概率论的想法经由雅可比.伯努利(Jacob Bernoulli)(丹尼尔.伯努利的叔叔)整理收集在Ars Conjectandi一书。他给出并证明了大数法则:如果大量重复相同实验(例如掷骰子),则观察的均值(你所掷之数的平均值)将会收敛于期望(例如一个均匀骰子每一面的概率基本相同,则期望是(1 2 3 4 5 6)/6=3.5)

测度论

基于雅可比.伯努利的工作,概率论由十八世纪的拉普拉斯(Laplace)、费希尔(Fisher),二十世纪的奈曼(Neyman)和皮尔逊(Pearson)等科学家所共同发展。结合统计学知识,概率论当时已成为科学家的基本工具。在二十世纪的前三分之一阶段,通过数据观察,概率论正被成功用来推断结果,比如通过相关数据来预测一个人的寿命。但是作为一种归纳科学,(即其结果由实验观察而产生,而不是根据由基本公理所构成的数学推理所产生),概率论直到1933年才得以完全统一到数学当中,这方面的重要先驱者是前苏联的伟大数学家柯尔莫哥洛夫(Andrey Kolmogorov),他定义概率为一系列事件的某种测度,而并非只基于某些事件的发生频率。这就是我们今天知道的概率测度论。


这幅画如何估值?

如果你已经习惯了数事件个数来计算概率,那么本概率测度论的观点是反直觉的,但是这一观点可以用一个简单例子来解释清楚,如果你想估量一幅画的价值,可以通过测量这幅画所占面积、拍卖商的出价或者你自己的主观评价来衡量。对于柯尔莫哥洛夫而言,这些都是能转化成概率测度的可接受方法。而你的决策方法,将取决于你要处理的问题:如果你要用图片覆盖一面墙,那么面积测量法是最适合的;如果你是要投机买卖,那么衡量拍卖商出价则比较合理。

柯尔莫哥洛夫当时制定的概率论公理,现在正被人们普遍接受。第一,一个事件的发生概率是一非负实数(P(E)≥0)。第二,如果你知道一个事件所有可能的结果,那么这个事件产生其中一个结果的概率是1(例如:对于一个六面骰子来说,掷出1,2,3,4,5或6的概率为1,即P(1,2,3,4,5,6)=1)。第三,互斥事件的概率可以相加(例如,掷出偶数的概率为:P(2,4,6)=P(2) P(4) P(6)=1/2)。(你可以在Understanding Uncertainty网站看到更多关于概率论及其发展的文章,另外《Measure for measure》是一篇介绍测度论非常好的延伸阅读文章。)

制定一个公平的价格

为什么测度论方法在金融中如此重要?金融数学家基于一个很简单的前提调查市场:衡量一份资产的价值时,没有风险的收益是不可能发生的;同样,没有收益的风险也是不可能存在的。如果好好思考这个前提,人们应该意识到这个前提和实际的业务并无太大关系。实际业务的目标是没有风险地赚取资金,这就是所谓的“套利”。金融机构往往会在帮助他们确定套利时机的技术上投入重金。

一份资产在评估的时候需要避免这种“套利”。金融数学家意识到一份资产的价值,可以用一种特殊测度的期望所表示,叫做“风险中性测度”。这种测度方法与那些通过过往观察所得出的资产涨价和降价的自然概率没有任何关联。(风险中性测度的解释非常容易,在这篇文章中有详细描述。你也可以通过延伸阅读《Rogue Trading》学到套利和期权的基本知识。)

和概率论中的许多定理一样,看上去简单的东西,其实却是十分精巧的。一个无套利的价格并不仅仅是通过使用特殊概率而得到的期望。如果价格是中性风险的,并不会引起任何盈利与亏损,那么这种价格就是无套利的。另外,你还必须采取一种称之为“对冲”的投资策略将所有赢钱或输钱的概率消除。注意到在现实世界中,还要涉及到诸如税收和交易成本等复杂的事情,要想找到一种能将所有的风险对冲掉的风险中性测度是不可能的。金融数学中,最基本的目标之一就是在现实世界中去建立使风险最小化的最优投资策略。

优秀的公司

金融数学十分有趣,因为它结合了数学中技术与抽象的多个分支,而测度概率论与相应的实际应用影响着人们每天的生活。金融数学又令人无比兴奋,因为通过运用高端的数学知识,我们正在发展金融学与经济学的理论基础。为了体会到这项工作的影响,我们需要意识到许多当代的金融理论,包括获诺贝尔奖的工作,都是基于某些假设,而并非因为它们反映某些被观察到的现象,这些人为的合理的假设能够让数学更易表示。就如同物理能够激发新的数学分支一样,金融数学现在正在发展一种全新的数学,用来刻画经济现象而不是物理现象。

金融创新目前拥有的声誉不佳,有些人觉得数学家们在卷入这个“不义之财”之前应该三思。但是,亚里士多德告诉我们,西方科学之父泰勒斯(Thales),通过将其科学知识应用于投机而变得富有,伽利略则是在离开了帕多瓦大学之后为Cosimo II de Medici工作,并撰写了“对骰子的发现”一书后,从而成为第一个定量分析师。在伽利略离开帕多瓦之后差不多一百年后,牛顿离开剑桥并成为皇家造币厂的管理人,却在南海骗局中损失了现在价值三百万英镑的财产。从个人方面来说,这让牛顿学到很多,也使我受益匪浅。此外,当数学与金融结合,有趣的事情便会发生:概率论的许多新概念就是从这个交叉处产生。最近,美国国防部先进研究项目局在数学上提出了23个挑战,其中一些问题如大脑中的数学、网络中的动力学、捕捉与利用大自然的随机性和超越凸优化,都与金融相关。



信贷危机并没有影响到所有的银行。一些银行如摩根大通(J. P. Morgan),结合了数学并做出了很好的决策,而其它的一些银行就没有这样做,于是就导致了一片混乱(参考Gillian Tett《Fools’ Gold》一书)。自从Cardano开始,金融数学已经成为一门探索人们如何在不确定事件面前做决定,并建立最优决策的学科创造财富,或者至少不使财富缩水,仅仅是这门学科的一个副产品。正如在牛津大学研究行为经济严谨数学基础的周迅宇教授近期评论道:

“金融数学不仅需要告诉人们什么应该做,同时也要让他们了解自己正在干什么。而这也恰恰将金融数学研究提高到了一个新的水平线上:我们是否能模拟和分析人类缺陷中的一致性与可预测性,从而使得这种缺陷能够被解释、被避免或被利用来产生效益呢?”

这是一种理论的说法。而在现实生活中,一位投资银行的业务员说的话更加简单明了:

“银行需要高等数学的技能,因为这是银行如何赚钱的方法。”

作  者:Tim Johnson



长按二维码或点击阅读原文

(温馨提示:节后发货)



原文

What is financial mathematics?

By 

Tim Johnson


Submitted by plusadmin on September 1, 2009


If I tell someone I am a financial mathematician, they often think I am an accountant with pretensions. Since accountants do not like using negative numbers, one of the oldest mathematical technologies, I find this irritating.

A roll of the dice

I was drawn into financial maths not because I was interested in finance, but because I was interested in making good decisions in the face of uncertainty. Mathematicians have been interested in the topic of decision-making since Girolamo Cardano explored the ethics of gambling in his Liber de Ludo Aleae of 1564, which contains the first discussion of the idea of mathematical probability. Cardano, famously, commented that knowing that the chance of a fair dice coming up with a six is one in six is of no use to the gambler since probability does not predict the future. But it is of interest if you are trying to establish whether a gamble is fair or not; it helps in making good decisions.


The average value of rolling a dice converges to the expected value of 3.5 when

the dice is rolled a large number of times.


With the exception of Pascal’s wager (essentially that you've got nothing to lose by betting that God exists), the early development of probability, from Cardano, through Galileo and Fermat and Pascal up to Daniel Bernoulli, was driven by considering gambling problems. These ideas about probability were collected by Jacob Bernoulli (Daniel's uncle), in his work Ars Conjectandi. He introduced the law of large numbers, proving that if you repeat the same experiment (say rolling a dice) a large number of times, then the observed mean (the average of the scores you have rolled) will converge to the expected mean. (For a fair dice each of the six scores is equally likely, so the expected mean is (1 2 3 4 5 6)/6 = 3.5.)

Measure theory

Building on Jacob Bernoulli’s work, probability theory was developed by the likes of Laplace in the eighteenth century and the Fisher, Neyman and Pearson in the twentieth. In conjunction with statistics, probability theory became an essential tool of the scientist. For the first third of the twentieth century, probability was associated with inferring results, such as the life expectancy of a person, from observed data. But as an inductive science (i.e. the results were inspired by experimental observations, rather than the deductive nature of mathematics built on axioms), probability was not fully integrated into maths until 1933 when Andrey Kolmogorov identified probability with measure theory. Kolmogorov defined probability to be any measure on a collection of events — not necessarily based on the frequency of events.



What is it worth?

This idea is counter-intuitive if you have been taught to calculate probabilities by counting events, but can be explained with a simple example. If I want to measure the value of a painting, I can do this by measuring the area that the painting occupies, base it on the price an auctioneer gives the painting or base it on my own subjective assessment. For Kolmogorov, these are all acceptable measures which could be transformed into probability measures. The measure you choose to help you make decisions will depend on the problem you are addressing: if you want to work out how to cover a wall with pictures, the area measure would be best; if you are speculating, the auctioneer’s would be better.

Kolmogorov formulated the axioms of probability that we now take for granted. Firstly, that the probability of an event happening is a non-negative real number (P(E) ≥ 0). Secondly, that you know all the possible outcomes, and the probability of one of these outcomes occurring is 1 (e.g. for a six-sided dice, the probability of rolling a 1, 2, 3, 4, 5, or 6 is P(1,2,3,4,5,6) = 1). And finally, that you can sum the probability of mutually exclusive events (e.g. the probability of rolling an even number is P(2,4,6) = P(2) P(4) P(6) = 1/2). (You can read more about probability and its development on the Understanding Uncertainty site, and the Plus article Measure for measure is an excellent introduction to measure theory.)

Deciding a fair price

Why is the measure theoretic approach so important in finance? Financial mathematicians investigate markets on the basis of a simple premise; when you price an asset it should be impossible to make money without the risk of losing money, and by symmetry, it should be impossible to lose money without the chance of making money. If you stop and think about this premise you should quickly realise it has little to do with the practicalities of business, where the objective is to make money without the risk of losing it, which is called an arbitrage, and financial institutions invest millions in technology that helps them identify arbitrage opportunities.

An asset should be priced so as to prevent such arbitrages. Financial mathematicians realised that an asset’s price can be represented as an expectation under a special probability measure, called a risk-neutral measure, which bears no direct relation to the 'natural' probability of the asset price rising or falling based on past observations. (The explanation of risk-neutral measures is pretty straightforward and is described here. You can also read a general introduction to arbitrage and pricing in the Plus article Rogue Trading.)

However, as with much of probability, what seems simple can be very subtle. A no-arbitrage price is not simply an expectation using a special probability; it is only an arbitrage-free if it is risk neutral and will not result in the possibility of making or losing money. And you have to undertake an investment strategy, known as hedging, that removes these possibilities. In the real world, which involves awkward things like taxes and transaction costs, it is impossible to find a unique risk-neutral measure that will ensure all these risks can be hedged away. One of the key objectives of financial maths is to understand how to construct the best investment strategies that minimises risks in the real world.

In good company

Financial mathematics is interesting because it synthesizes a highly technical and abstract branch of maths, measure theoretic probability, with practical applications that affect peoples’ everyday lives. Financial mathematics is exciting because, by employing advanced mathematics, we are developing the theoretical foundations of finance and economics. To appreciate the impact of this work, we need to realise that much of modern financial theory, including Nobel prize winning work, is based on assumptions that are imposed, not because they reflect observed phenomena but because they enable mathematical tractability. Just as physics has motivated new maths, financial mathematicians are now developing new maths to model observed economic, rather than physical, phenomena.

Financial innovation currently has a poor reputation and some might feel that mathematicians should think twice before becoming involved with 'filthy lucre'. However, Aristotle tells us that Thales, the father of western science, became rich by applying his scientific knowledge to speculation, Galileo left the University of Padua to work for Cosimo II de Medici, and wrote On the discoveries of dice, becoming the first quant. Around a hundred years after Galileo left Padua, Sir Isaac Newton, left Cambridge to become warden of the Royal Mint, and lost the modern equivalent of £3,000,000 in the South Sea Bubble. Personally, what was good enough for Newton is good enough for me. Moreover, interesting things happen when maths meets finance: the concept of probability emerged out of the interface. And looking at the23 DARPA Challenges for mathematics, several of these — the mathematics of the brain, the dynamics of networks and capturing and harnessing stochasticity in nature, beyond convex optimization — are all highly relevant to finance.



The Credit Crisis did not affect all banks in the same way. Some banks, like J.P. Morgan. engaged with mathematics and made good decisions, while others did not and caused mayhem (see Gillian Tett’s book Fools’ Gold for more information). Since Cardano, financial maths has been about understanding how humans make decisions in the face of uncertainty and then establishing how to make good decisions. Making, or at least not losing, money is simply a by-product of this knowledge. As Xunyu Zhou, who is developing the rigorous mathematical basis for behavioural economics at Oxford, recently commented:

Financial mathematics needs to tell not only what people ought to do, but also what people actually do. This gives rise to a whole new horizon for mathematical finance research: can we model and analyse ... the consistency and predictability in human flaws so that such flaws can be explained, avoided or even exploited for profit?.

This is the theory. In practice, in the words of one investment banker:

Banks need high level maths skills because that is how the bank makes money.


About the author


Tim Johnson is an RCUK Academic Fellow in Financial Mathematics, based at Heriot-Watt University and the Maxwell Institute for Mathematical Sciences in Edinburgh. He is active in promoting the sensible use of mathematics in finance and highlighting the need for more research into mathematics in order to better understand random and complex environments. He is Course Director for the only undergraduate course in Financial Mathematics, on which he teaches, and undertakes research in stochastic optimal control. Prior to becoming an academic, he worked for sixteen years in the oil exploration industry.

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
对概率论起源的思考==论文资源库
【学府点拨】概率——随机世界与大数据时代
高等概率论的一些学习心得兼推荐一些相关书籍
02 数学基础 _ 概率论
数学科目常见的六大分支
金领中的金领 “精算专业”了解一下!
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服