打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
餐厨垃圾处理厌氧工艺完整版
1.前言
餐厨垃圾是城市日常生活中产生的最为普遍的废弃物,属于城市生活垃圾,其主要成分包括淀粉类食物、植物纤维、动物蛋白和脂肪类等有机物,具有含水率高,油脂、盐份含量高,易腐烂发臭,不利于普通垃圾车运输等特点。这类垃圾若不经分类专项处理,会对环境造成极大的危害。
餐厨垃圾主要来源于餐饮服务业、家庭和企事业单位食堂等产生的食物加工下脚料(厨余)和食用残余 (泔脚)。随着我们国家经济的飞速发展,城市化进程的逐渐加快,餐厨垃圾的产量呈现出逐年上升的趋势。在国内的大型,特大型城市中如北京,上海,深圳等,餐厨垃圾的日产量已达数千吨,全国餐厨垃圾的年产量达到千万吨,单纯填埋的话,占用大量土地,产生的垃圾渗滤液和填埋气体也需要后期处理,耗费大量人力,物力。
餐厨垃圾目前在很多城市尚未进行规范化管理,收集容器摆放地环境脏乱,孳生和招引蚊、蝇、鼠、蟑螂等害虫,易传染疾病,危害人民的身体健康。垃圾收集地附近容易产生难闻气味,引起人们感官上的反感;由于餐厨垃圾含水量较高的特性,在运输的过程中存在一系列问题。运输车辆不规范,易发生餐厨垃圾外漏和倾洒,严重影响市容、市貌和交通;最主要的是城市餐饮企业的垃圾多被养殖户收集,作为养殖饲料直接使用,垃圾未经处理进入人类食物链,危及人民群众的身体健康;同时地沟油也被收集起来重新炼制成为廉价食用油,在市场上再次流通,危害人民群众的身体健康。
在存在问题的同时,餐厨垃圾因其富含有机物也可作为潜在的能源供应体。通过恰当的处理方法,可以释放出蕴藏在餐厨垃圾中的能量,转化为电能,热能,作为常规能源载体的有效补充。在当前我国能源供应日趋紧张的时期,寻求新能源迫在眉睫,利用餐厨垃圾通过成熟工艺技术获取能源不失为合理的解决方案。
2.餐厨垃圾概况
2.1.餐厨垃圾性质
集中收集的餐厨垃圾成分复杂,不仅包括宾馆、饭店的剩菜、剩饭还包括大量废旧餐具、破碎的器皿,厨房的下脚料等,是油、水、果皮、蔬菜、米面,鱼、肉、骨头以及废餐具、塑料、纸巾等多种物质的混合物。糖类含量高,以蛋白质、淀粉和动物脂肪等为主,且盐分、油脂含量高。以中国南方某城市为例,下表详细给出了餐厨垃圾的组分与成份:
表2.1 :餐厨垃圾组分
食物垃圾
纸张
金属
骨头
木头
织物
塑料
油脂
75.1% - 90.1%
0.8%
0.1%
5.2%
1.0%
0.1%
0.7%
2.0% - 17%
表2.2 :餐厨垃圾成分
平均含水率
平均含固率
有机干物质
含油率
粗蛋白
盐分
总含碳量
碳氮比C/N
有机酸
87%
13%
93%TS
17%
15 g/100g
0.2 %– 1.0%
360g/kg
15
1500 mg/L
餐厨垃圾的特点可归纳为:
1) 含水率高,可达80% - 95%
2) 盐分含量高,部分地区含辣椒,醋酸高
3) 有机物含量高,蛋白质,纤维素,淀粉,脂肪等
4) 富含氮,磷,钾,钙及各种微量元素
5) 存在有病原菌,病原微生物
6) 易腐烂,变质,发臭,滋生蚊蝇
2.2.餐厨垃圾无害化处理的必要性
之前我国餐厨垃圾的主要用途是被城市周边的养殖户收集起来作为饲料直接使用,这种利用方式有着悠久的历史。这种利用方式的问题在于:
??餐厨垃圾中含有大量人畜共患传染病的病原微生物,不但容易引起动物感染病毒,还容易造成人体感染口蹄疫、肝炎等疾病。
??猪食用后极易感染和诱发各种疾病,势必加大对病猪的用药剂量,从而会加大抗生素类药物的残留,通过猪肉进入人体,容易对人体健康造成危害。
??餐厨废弃物,已受到铝、汞、镉等重金属以及有机化合物、苯类化合物的污染,被猪食用后,有害物质蓄积在猪的脂肪、肌肉等组织里,人食用到一定程度后,就会导致肝脏、肾脏等系统免疫功能下降。
此外,餐厨垃圾作饲料可能会导致同源性污染。所谓同源性污染是指动物食用其同类动物的肉,骨,血液等动物组织生产的动物源性饲料,产生的潜在的,不确定的传播疾病风险。餐厨垃圾中恰恰含有动物组织,直接作为动物饲料的话,存在着潜在风险。
除直接作为饲料喂养动物使用外,餐厨垃圾中的油脂部份被不法分子提炼后重新作为食用油(地沟油)使用也对人类的健康产生威胁。地沟油中含有黄曲霉素,苯等毒素杂质,长期食用会造成慢性疾病的发生,更严重时会致癌。
2.3.餐厨垃圾资源化处理的可行性
餐厨垃圾是动植物原料经过加工后产生的,其中富含有机物质,有机无中蕴含有大量的能量,如果餐厨垃圾只是被简单的填埋在垃圾填埋场中,这些能量就被白白的浪费掉了。随着我国经济的快速发展及经济结构的调整,对能源,特别是绿色可再生能源的需求越来越迫切,高效合理地将蕴藏在垃圾中的能源重新利用起来,将会部分满足这种能源需求。
20世纪末技术人员把原本用于污水处理领域内的厌氧发酵产沼气技术移植到餐厨垃圾处理上来,经过不断的努力,如今利用厌氧发酵处理餐厨垃圾产沼气在技术上已经十分成熟,工艺也相当可靠。该技术的原理是餐厨垃圾中的有机物在厌氧菌的作用下,在适宜的温度条件下,经过发酵降解产生沼气。同时降解后产生的含水量较小的沼渣经过处理后作为有机肥料使用,沼液作为液体肥料使用,从而实现垃圾减量化资源化利用。发酵后产生的沼气中含有55%-75%(体积浓度)的甲烷,可用于发电,供热等,能够缓解能源供应紧张的局面。
3.餐厨垃圾的处理
餐厨垃圾的处理包含有三方面内容:餐厨垃圾的收集运输;餐厨垃圾的无害化,资源化处理;处理后产物的利用。
餐厨垃圾产生
3.1.餐厨垃圾的收运
目前国内已有部分城市颁布实施了餐厨废弃物管理条例,对餐厨垃圾的收运做出了具体的规定。餐厨垃圾收运系统由垃圾收集装置、垃圾运输装置及其维修车间等设施组成,主要负责宾馆、食堂及餐饮企业餐厨垃圾的收集和运输。
餐厨垃圾产生后,由宾馆、食堂等产生单位将其收入标准收集桶内,在环卫部门规定的时间内放置于指定的转运点,再由环卫部门或政府指定的垃圾清运企业定时收运。
运输车辆采用密闭式运输车,车上设有挂桶机构,将垃圾标准桶提升至车厢顶部,再通过翻料机构将垃圾倒入车厢内,运输过程中车厢密闭。
垃圾被运至处理厂卸料平台之后,密封后盖打开,推料机构将餐厨垃圾推出,进入接料系统进行后续处理。车上所有操作为液压自动控制,可分别在驾驶室和车旁操作。
为了对运输车辆及设备进行日常维护和修理,在垃圾处理厂内设置了小型维修车间,车间内配置有相应的车辆维护设备,可在车间内对车辆进行一般维护、轮胎加气和修理,大修则在厂外协作。
收运流程为:宾馆、食堂、餐厅标准桶——收集点——运输车——处理厂计量——卸料平台卸料——车辆清洗——再次收运。
餐厨垃圾的收运清理过程须保证运输器具的密封性,清洁性,收运的及时性,以及收运单位的经济性。
3.2.餐厨垃圾处理技术
3.2.1.概述
目前餐厨垃圾的处理技术主要包括有:
1) 填埋
2) 焚烧
3) 好氧堆肥
4) 饲料化处理
5) 厌氧发酵
3.2.1.1.餐厨垃圾的填埋
目前我国的餐厨垃圾大部分采用的仍然是直接填埋的处理方式。收运来的餐厨垃圾与
其他生活垃圾混杂在一起,直接进入填埋场进行填埋。这种工艺的优点是方法简单,运行的费用低廉,而且处理量巨大。缺点是占用大量土地资源,耗费大量的土地征用费用。餐厨垃圾填埋后因其含水率高,有机物含量高等特点,会形成垃圾渗滤液,臭气等直接影响到地下水和大气等自然资源,形成二次污染,危害人类的健康。另外,餐厨垃圾直接填埋也白白浪费掉了垃圾中蕴含的能量,使得资源没有得到有效利用。
在当前土地资源紧缺、人们对环境问题的关注度越来越高,餐厨垃圾产量日趋增高的前提下,填埋处理技术已明显不适合我国餐厨垃圾处理的实际情况。
3.2.1.2.餐厨垃圾的焚烧
将垃圾中的可燃物燃烧后产生热量进行发电,从而达到垃圾资源化利用的一种垃圾处理工艺。该工艺的优点是处理量大,垃圾的减量效果明显。焚烧后产生的热量可以发电,实现垃圾资源化利用。但是焚烧工艺对垃圾的热值较高的要求,餐厨垃圾中的含水量通常在80%-90%间,过高的含水率使得餐厨垃圾的热值也很低,如果使用焚烧技术进行处理,将会极大地增加处理成本。同时由于不完全燃烧产生的气体固体产物排放后会危害人类的健康。
近年来我国垃圾焚烧项目在实施过程中引起的争议较大,人民群众对焚烧技术的信任程度与接受认可程度均不高,因此无论从技术上看,还是从社会影响上看,焚烧技术应用在餐厨垃圾处理项目上的可行性很低。
3.2.1.3.餐厨垃圾的好氧堆肥
好氧堆肥技术是指有机物在有氧条件下,在好氧微生物(主要是菌类)的作用下,将高分子有机物降解成为无机物的过程。好氧堆肥的技术比较成熟,在国外的应用比较广泛。该工艺的优点是技术比较简单,好氧处理后的产物可作为农产品使用,实现了垃圾的再利用。但是好氧堆肥技术主要应用于绿色植物垃圾(市政维护产生的树枝,树叶等)及秸秆等富含组织结构的垃圾处理,对于餐厨垃圾这样不含有组织结构的垃圾处理没有技术上的优势。此外,好氧堆肥占地面积较大,处理周期加长,增大运行成本。好氧过程在非密闭环境内进行,产生的臭气会形成二次污染,影响周围环境。
由于餐厨垃圾的含水量较大,在好氧堆肥技术上液体的处理也是技术上的难点。餐厨垃圾的好氧堆肥并不适用。
3.2.1.4.餐厨垃圾的饲料化处理
餐厨垃圾的饲料化处理是指餐厨垃圾经过固液分离后,含固率较高的部份经过高温杀菌消毒烘干后,加入适当的菌类将有机物降解成为生物饲料的过程。其他的液体垃圾部分经过厌氧发酵产沼气,含有的油脂经过油水分离后可制成工业原料或生物柴油。
饲料化处理的优点是机械化程度高,占地面积较小,垃圾的资源化利用程度高。缺点是制得的有机饲料重新进入食物链,最终回到人体之中,其中的风险无法预测。目前国家有关部委正在评估有关餐厨垃圾饲料化产物利用的风险问题,该处理技术前景并不明朗。
3.2.1.5.餐厨垃圾厌氧发酵处理
餐厨垃圾的厌氧发酵处理是指垃圾中的有机物质在厌氧菌的作用下,由高分子物质降解成为小分子物质,最终转化为沼气的过程。
餐厨垃圾经厌氧发酵降解后产生的沼气可通过热电联产发电机组中转化为电能和热能,电能可接入电网供生产生活实用,热能在供应垃圾处理设备自身使用后可补充市政供热设施部份热能需求,实现经济利益与社会效益共赢的局面。
发酵后产生的沼液经过脱氮,脱盐,脱硫处理后可作为液态有机肥料在农业灌溉园林种植等领域广泛使用。沼渣经过好氧堆肥后也可作为肥料使用,从而实现垃圾的减量化,资源化处理。
厌氧发酵技术的优点是垃圾的减量化,资源化处理效果好,产生的沼气发电可作为新能源补充现有常规能源。厌氧发酵过程中无臭气逸出,发酵后不会产生二次污染,社会大众的接受程度较高。该技术成熟,在国外已有较为广泛的应用,工程案例很多。
3.2.3.餐厨垃圾厌氧发酵处理工艺流程
餐厨垃圾厌氧处理工艺主要是指通过成熟稳定的厌氧发酵技术,使收运来并且经过预处理的餐厨垃圾在厌氧菌的作用下,在一定的温度条件下,密闭容器中发酵后产生沼气并且沼气通过热点联产发动机发电和供热的过程。发酵后产生的沼液和沼渣经过无害化,资源化处理后可作为肥料再次使用,从而实现垃圾的减量化再利用。
以两相厌氧工艺为例,餐厨垃圾厌氧发酵工艺流程主要包括:
1) 预处理
2) 水解酸化
3) 产沼气
4) 沼气利用
5) 沼液,沼渣处理及再利用
3. 2. 3. 1.预处理
餐厨垃圾经过收运车辆的运输到达处理场地后,倾倒入进料池内。由于在餐厨垃圾产生地如餐馆,饭店收集垃圾时会使用塑料包装袋,因此进料垃圾首先进行破袋处理,破袋后的垃圾再进入预处理阶段,进行机械预处理。
收运来的餐厨垃圾中通常会含有一定量的干扰物质,如纸张,金属,骨头等。这些物质在厌氧发酵过程中不能被降解,因此应在预处理阶段被分选出去。纸张和金属类物质可循环利用,其他的物质进入填埋场进行卫生填埋。
分选后的餐厨垃圾中仍然含有颗粒较大的物质,如水果,蔬菜,肉块等。颗粒较大的垃圾在输送管道内输送或在容器内搅拌时可能对设备的稳定运行产生影响,同时颗粒较大的物质比表面积较小,这样会使得垃圾颗粒在反应器内与厌氧菌的接触面积减小,降低厌氧发酵降解效果。为增强处理过程中设备运行的稳定性以及提高厌氧发酵的效果,在进行分拣后,餐厨垃圾通常需再进行粉碎处理,粉碎后的垃圾颗粒根据不同工艺要求不同,通常情况下颗粒大小在10mm左右。
粉碎后的垃圾可进行固液分离。餐厨垃圾在经过了分选、粉碎后仍然含有一些颗粒较小,但是在厌氧反应器中不能够被降解掉的固体物质,如细砂等。这些固体物质进入反应器后通过内部搅拌,会磨损反应器和搅拌器,降低设备使用寿命。长时间运行时,还会在反应器底部形成堆积,降低反应器的有效是使用体积。通过固液分离可使得这部份固体物质从垃圾中分离出去,只剩下可降解物质进入反应器,从而提高厌氧发酵罐的工作效率,保证产气稳定,进而保证整个厌氧装置的高效稳定运行。
当餐厨垃圾的干物质含量(TS)高于反应器设计进料TS时,通常会在垃圾进入反应器前加入清水或循环回流水进行稀释,以降低TS。此时可在预处理阶段设均浆工艺。经过均浆后的垃圾物料再通过管道输送入反应器内。
3. 2. 3.2.水解酸化
经过预处理的餐厨垃圾进入水解酸化罐内进行水解酸化。在此之前,可以设置热交换设备,使得垃圾在管道输送过程中实现升温,达到水解酸化所需温度,从而避免反应器内温度出现较大的起伏变化。
有机垃圾在反应器内经过水和水解酸化菌的作用下,由块状,大分子有机物,逐步转化成为小分子有机酸类,同时释放出二氧化碳,氢气,硫化氢等气体。水解酸化阶段产生的有机酸主要是乙酸,丙酸,丁酸等。由于水解酸化过程进行的很快,反应器内很快形成酸性环境,也就是说pH值在降低。尽管水解酸化菌的耐酸性很好,当pH值过低时,菌类仍然会受到抑制,导致降解效果低下。
为解决这一问题,可向反应器内加入碱性物质进行中和,但碱性物质的加入会增加盐度,对厌氧发酵和沼液处理产生负面影响。此外为解决pH值过低的问题,也可使用pH值较高(约8)的循环回流水进行中和。回流水的使用可部分解决发酵后沼液处理问题,实现厌氧发酵厂内的物质循环利用。同时使用回流水也可补充部分养料及稀有金属供给厌氧菌使用,避免菌类因营养缺乏引起的活性下降甚至死亡。
水解酸化阶段产生的气体中含有硫化氢,不能直接排放进入空气,经过脱硫处理后气体可直接排放或作其他用途。
水解酸化阶段的温度通常控制在25℃-35℃,并且不会随着产甲烷阶段的温度变化而改变。维持反应器内温度可使用沼气热点联产后产生的热量实现。
3.2.3.3.产甲烷
产甲烷阶段也可称为产气阶段,这一阶段是厌氧发酵的核心阶段,厌氧发酵的主要产品都来自于这一阶段,因此,控制好这一阶段是控制好整个厌氧处理的关键。
水解酸化阶段的产物如有机酸类和溶解在液体中氢气,二氧化碳等通过管道运输进入产甲烷罐中,有机酸和气体在反应器内被进一步转化为甲烷气体和二氧化碳气体,由于硫化氢在水解酸化阶段已经释放出去,在产甲烷阶段的硫化氢产量很小,几乎可忽略不计。
由于进入产甲烷罐的物料为水解酸化后的有机酸,因此反应器的可以适应较高的有机负荷,同时缩短物料的停留时间。根据国外现有经验表明,反应器的有机负荷通常在3 - 4.5 kg oTS/m3.d 。沼气产量可稳定保持在700 - 900 L/kg oTS 之间,沼气中甲烷浓度在60%-75%间。
影响厌氧发酵的因素有很多,如反应器内的温度,pH值,进料垃圾的碳氮比等,这些因素直接影响着厌氧降解的稳定性。表3.6中列出了影响厌氧降解过程的各种因素及其工艺适宜值.
表3.6 厌氧降解影响因素及其工艺适宜值
影响因素
水解酸化阶段
产甲烷阶段
温度
25℃-35℃
中温:35℃-38℃
高温:55℃-60℃
酸碱值(pH值)
5.2-6.3
6.8-7.5
碳氮比(C/N)
10-45
20-30
固含量
< 40 %? TS
< 30 %? TS
养料 C:N:P:S
500:15:5:3
600:15:5:3
微量元素
无要求
镍,铬,锰,硒
3.2.3.4.沼气利用
发酵后产生的沼气中含有甲烷,二氧化碳,硫化氢,其他气体等。甲烷气具有可燃性,浓度通常可达到60%-75%,沼气通入热电联产发电机后可进行发电,剩余的热量可供垃圾处理设备自身使用。根据国外已有项目经验,处理能力为200吨/天的垃圾厌氧处理厂每天的沼气产量可达到25000m3-30000m3,当沼气中的甲烷浓度为60%时,由此发出的电能约为60000kW.h/d - 71000kW.h/。
除了直接燃烧发电之外,厌氧发酵后产生的沼气还可以在经过脱碳净化后进入城市煤气生产企业,经过加压后进入管网,供给居民日常生活使用。
随着技术的不断进步,新能源汽车逐渐出现在市场之上。欧洲国家,如瑞典,德国等已经出现了利用沼气作为燃料的新能源汽车。如果能够普及加注站点,沼气也是十分优越的新能源汽车燃料。
3.2.3.5.沼液,沼渣的处理及利用
厌氧发酵后的剩余产物从发酵罐出来后仍然具有较高的含水率,并不能够直接填埋,而是需要先经过脱水处理。发酵剩余物经过离心脱水后还会产生沼液及沼渣。沼液和沼渣中富含有氮,磷,钾,微量元素等植物所需的营养物质,可被用来作为有机肥料使用。
关于沼液制肥料的处理在国外已有成熟的技术,并且经过实际应用,效果良好,使得经过处理后的沼液可以符合有关标准要求,直接作为液体肥料喷洒在农田里。
脱水后剩余的沼渣经过好氧堆肥后可作为成品肥料出售。在进行好氧堆肥时通常要加入秸秆的物质降低含水率并且补充营养物质。堆肥的时间大概在15-25天间,经过堆肥后的肥料即可作为肥料在市场上出售。
这种利用发酵后剩余物的方式在欧洲厌氧发酵应用广泛的国家已经得到验证,并获得成功。依据我国农业现状,经过处理后制得的有机肥料有比较广泛的市场。
除此之外,沼液在经过脱盐,脱硫,脱氮,脱磷等处理后达标排放。
3.2.3.6.废油脂利用
我国有着悠久的饮食文化传统,各地美味佳肴数不胜数,菜肴中除了肉,蛋,蔬菜等食材外,还有烹制所加入的食用油。也就是说,餐厨垃圾中除了含有大量的有机物外还存在油脂类废弃物,因此,在处理餐厨垃圾时应对废弃油脂采取相应的解决办法。
餐厨垃圾中的油脂是可以被厌氧发酵降解掉的,但脂肪的性质决定了其厌氧降解过程十分缓慢,并且及易在反应器内与其它物质形成黏度较大的悬浮物,影响设备的正常运行。因此在厌氧发酵工艺中通常先去除餐厨垃圾中含有的大量油脂废弃物,剩余的含有较少量油脂的餐厨垃圾进入到发酵罐中进行降解。
餐厨垃圾中的油脂部分通常在预处理阶段通过油水分离的方式从垃圾中分离出去。这些油脂可以同回收的“地沟油”及废食用油一起,经过化学方法或生物方法处理后转变为生物柴油或其他化工工业原料,可实现较好的经济效益。通过油脂的分离处理利用,既实现了废弃资源的重新利用,产生较好的经济回报,又能够从源头上消除“地沟油”的生产,使得“地沟油”不再回到人们的餐桌上,保证食品安全,避免人们的身体健康受到危害。
4.公司采用工艺
通过与德国餐厨垃圾处理企业合作,引进世界领先的餐厨垃圾处理工艺及设备,采用成熟工艺及高效设备完成餐厨垃圾的厌氧处理,真正实现餐厨垃圾的无害化,资源化,减量化处理。
本工艺为连续式、中温、湿法、两相厌氧发酵工艺,与其他厌氧发酵工艺相比,该工艺有如下特点:
表4.1 工艺特点
工艺名称 与其他厌氧工艺相比的特点
4. 自动化程度较高
工艺名称
与其他厌氧工艺相比的特点
中温
1. 降解过程稳定
2. 菌类的生物物种多样
3. 氨氮物质对厌氧降解的抑制作用小
4. 4.能耗较小
湿法
1. 进料的传送、混合技术简单
2. 反应器内搅拌技术简单
3. 反应器内的热交换及物质交换好,产生的气体较易释放出来
两相
1. 工艺稳定性好
2. 产气量较高
连续式
1. 反应器数量较少
2. 占地面积较小
3. 运行成本较低
4. 自动化程度较高
本工艺根据餐厨垃圾处理厂日处理量200吨设计完成,各工艺组成部分为模块化设计,可根据业主的不同要求优化设计。设计工艺技术指标如下:
表4.2 工艺指标(无油脂分离)
工艺参数
指标
工艺参数
指标
处理能力
50 t/d
杂质含量
干物质含量(TS)
25%
发酵温度
37-42 ℃
有机干物质含量(oTS)
有机降解率
88%
沼气产量
432.45 m3/h
需水量
单位产气能力
874 L/kg oTS
电耗
1425 MWh/a
甲烷浓度
≥58%
热耗
3919 MWh/a
有机负荷
占地面积
发电装机容量
1 MW
停留时间
工艺流程如下:
1) 机械化预处理过程
2) 水解酸化过程
3) 发酵产气过程
4) 沼气发电过程
5) 发酵后沼液,沼渣处理利用过程
6) 废弃油脂处理再利用过程(可选)
工艺流程图:
4.1.1.机械化预处理过程
餐厨垃圾经收运车辆运输后到达处理场,处理过程的开端是物料接收池。垃圾被直接倾倒入接收池内,经过螺旋输送器运送至粉碎分拣装置,在这个输送过程中可实现破袋,粗粉碎等过程。
根据不同工艺设计,破袋后的垃圾原料可进行除油分离处理。油脂在垃圾中以游离态和固态存在。游离态的油脂可通过油水分离去除,固态油脂经过高温析出,以游离态存在,再经过油水分离去除。分离出来的油脂可作为工业原料制取具有经济价值的产品,剩余的废水仍然具有较高的有机物含量,进入发酵系统发酵,制取沼气
分拣粉碎阶段主要是实现餐厨垃圾中轻重物质的分离,杂质的去除,垃圾颗粒的减小,上海闻源环境公司引进德国先进设备,在同一设备运行过程中可同时实现以上这三个目的,能够极大地提高处理效率,优化处理结果,降低运行成本。经过粉碎分拣后分离出来的杂质进入卫生填埋场填埋,杂质的去除率可达99%。分拣出来的轻重物质主要是有机合成物及金属物等,可回收再利用,创造经济价值,实现物质的循环利用,也符合垃圾处理循环利用的要求。
经过粉碎分拣后的垃圾物料再次进行高温杀菌消毒处理,这是影响到垃圾处理后沼液,沼渣作为有机肥料使用能否达标的重要过程。我公司严格按照欧洲现行针对非食用类动物副产品杀菌消毒标准(EG 1774/2002)对餐厨垃圾进行杀菌消毒处理,餐厨垃圾在70℃高温下经过1个小时的下毒,避免由此而产生的危害人类健康,导致自然界污染等情况的产生,完全做到餐厨垃圾的无害化,无毒化处理。
4.1.2.水解酸化过程
经过一系列机械化预处理过程后,餐厨垃圾被制成均质浆液,浆液被泵入水解罐内进行水解酸化处理。水解酸化是整个有机物厌氧降解开始,有机物在水解罐内被从大分子水解开,逐渐转变为中小分子的有机酸,同时伴随释放出部分气体。餐厨垃圾的水解酸化有厌氧菌类参与,由于水解酸化菌类发挥最佳活性的环境条件与产甲烷菌类发挥最佳活性的环境条件有较大差别,因此为实现最佳的降解效果,本工艺设计为水解酸化过程与产甲烷过程分别独立进行的两相发酵过程,避免出现其他单相工艺容易出现的反应器内酸化,导致整个厌氧降解过程受到抑制的不利情况。最大限度的保证厌氧发酵过程的稳定性。
两相厌氧发酵工艺在德国众多有机垃圾厌氧降解工程中得到应用。由于实现了不同降解过程的独立进行,大大提高的整体的厌氧降过程的稳定性,同时也提高了产气效果,增加收益。
4.1.3.产沼气过程
经过水解酸化过程后产生的有机酸类物质通过管道输送进入发酵罐中,在适当的温度,pH值等条件下,在产甲烷菌类的作用下进一步降低分子数最终转化成为甲烷。这一过程是整个餐厨垃圾厌氧发酵的核心过程,从技术角度讲,是否能够控制好产气过程,将会决定一个餐厨垃圾处理项目的成败。
本工艺采用带有中央搅拌器的完全混合式发酵罐,圆柱形罐体,材质为带玻璃纤维内衬钢制,具有效率高、稳定性强、产气效果好、使用寿命长等特点。发酵罐有机负荷可达3.5 kgoTS/m3.d,垃圾中有机物的降解率可达88%,而通常厌氧发酵中有机物的降解率只有65% - 75% 。发酵罐体积为有机物降解率的提高意味着单位重量垃圾经过过发酵后沼气产量的提高,本工艺中每吨餐厨垃圾可产沼气207.6m3,目前年国内投入运行的餐厨垃圾厌氧处理厂每吨垃圾的沼气产量仅为86.4m3。本工艺在产气能力是该项目的2.4倍。
与传统的倾斜式搅拌器相比,中央搅拌器具有系列优点:
1) 物料在发酵罐内的分布更加均匀
2) 发酵罐内温度、pH值的分布更加均匀
3) 避免发酵罐内出现沉淀
4) 搅拌死角更小
5) 维修更换方便快捷
6) 能耗较低
此外,本工艺独创性地采用了再发酵技术。即在发酵罐后单独设立再发酵罐。经过发酵后的物质进入再发酵罐中再次降解,最大限度的提高垃圾原料中有机物质的降解率,从而提高沼气的产量,增加发电量,获取更多的经济利益。
位于再发酵罐顶部还安装有双层膜沼气储柜,该气柜具有重量轻,容量大,耐腐蚀,寿命长等特点。并且在气柜中配有测量控制设备,可以时时监控沼气的生产情况及沼气品质,通过相应的控制阀门对进入沼气发电机的气量进行控制调节,保证发电机组能够连续稳定运行。
4.1.4.沼气发电过程
本工艺设计厌氧装置产气量约为432.45m3/h,经过发电机组后每年可发电约800万度,按照北京市普通三口之家每年用电2400度电计算,厌氧产沼气发出的电量可以满足约3000多个普通三口之家一年的用电需求。
除发电利用外,产生的沼气在经过提纯净化处理符合国家有关标准后,还可以进入城市市政天然气管道作为家用燃气使用,或是作为清洁汽车原料使用。在德国,瑞典等国已经有数量众多的此类车用燃气站投入使用,可实现温室气体的减排,延缓温室效应,改善环境。
4.1.5.发酵后沼液,沼渣处理利用过程
厌氧发酵后产物中仍然含有部分有机物,同时含有大量的氮,磷,钾以及微量元素。这些元素是植物生长所必需的优质营养成分,如果白白放弃十分可惜,形成极大的资源浪费。
目前在欧洲,发酵后产物直接被用作农业肥料适用,餐厨垃圾处理厂周边的农户将这些产物用车辆运走,直接喷洒在自家的田地上,节省了购买肥料的经费。做到了垃圾的减量化处理。
在我国,由于条件所限,这种发酵后产物的利用方式目前还不能得到大范围推广使用,本工艺设计了发酵后产物脱水处理过程,解决发酵后产物问题。
经过脱水后产生了含水量极高的沼液(99%)以及含水量相对较低的沼渣(65%)。沼液经过脱氮等处理达标后可直接排放,沼渣可继续制成固体肥料或营养土,可广泛应用于农业、林业、水果蔬菜种植业、市政园林、沙化土壤改良、重金属污染土壤治理后恢复等多个领域。
4.1.6.废弃油脂处理再利用过程
废弃油脂主要是指餐饮企业,食堂废弃物中的油脂部分,使用过的食用油以及餐厨垃圾中含有的油脂部分。这其中前面两种就是人们常说的“地沟油”的主要来源。不法商贩通过各种手段将这些废弃的油脂回收,加工炼制成为廉价食用油,重新流入市场回到人们的餐桌上,进入人体危害人们的身体健康。
本工艺在处理餐厨垃圾的同时考虑到“地沟油”的危害性,设计了废弃油脂的处理再利用工艺,将分离出来的餐厨垃圾中的油脂与“地沟油”共同处理。油脂在餐厨垃圾中以游离态和固态存在。游离态的油脂通常与餐厨垃圾中的水份混合在一起,这部分油脂的分离可采用油水分离的方式,根据水与油的密度不同,利用温度的高低变化,实现油从水相中的分离。固态油脂通常是指肉类中含有的脂肪,以固态形式存在,不能够利用油水分离方式析出。采用高温析出的方法,使固态的脂肪形态改变,以游离态存,再经过油水分离去除。分离出来的油脂可作为工业原料制取具有经济价值的产品,如生物柴油等。分离后剩余的废水仍然具有较高的有机物含量,再次进入发酵系统发酵,与原有的餐厨垃圾混合,制取沼气。
化学原理上讲,油脂类物质是高级脂肪酸甘油酯,通过化学酯交换反应或生物酶合成反应可将油脂转化为生物柴油。生物柴油是清洁可再生能源,具有硫含量低,燃烧后含硫废气排放少,燃烧性好,安全性好等优点,可作为锅炉,涡轮机,柴油机等的燃料使用。加之生物柴油具有独特的可再生性,可以说取之不尽,用之不竭,应用前景极为广阔。
5.结语
餐厨垃圾处理作为一个新生事物在中国还并不成熟,虽然厌氧发酵技术在国内科研较多,但针对餐厨垃圾的厌氧发酵处理在实际的工程应用上几乎是一片空白,只有通过引进国外先进技术工艺并加以消化吸收改造,才能够在较短的时间内追赶上国际领先水平伺机超越。公司引进先进成熟经验技术,与中国实际情况相结合,进一步消化吸收改进,走符合中国国情的餐厨垃圾厌氧处理道路,真正实现餐厨垃圾无害化,资源化,减量化处理,改善人民生活环境,保证人民身体健康,共同创建清洁,美好,幸福的和谐社会!
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
500吨餐厨垃圾沼气化处理及资源化利用项目初步设计
沼气发电工艺项目建设的难点及处理措施
1000立方沼气主体工程实际参数附图
湿垃圾处置工艺及资源化利用
大中型沼气工程工艺技术杂谈
国内外干式厌氧发酵工艺技术汇总
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服