打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
尤肖虎等大咖6G报告!
userphoto

2023.07.08 北京

关注

重要信息

尤肖虎教授及其团队,华为2012网络架构实验室主任吴建军,华为中央研究院无线技术实验室副主任卢建民,鹏城实验室主任、中国工程院院士高文,鹏城实验室人工智能研究中心主任李革教授等联合撰写了重磅级6G论文(外语)《迈向6G TKμ极致连接:架构、关键技术与实验》(汉译名),5G公众号(ID:angmobile)与6G公众号(ID:sixgmobile)独家编译如下。

尤肖虎:紫金山实验室副主任兼首席科学家,东南大学移动通信国家重点实验室主任,鹏城实验室副主任。

黄永明:紫金山实验室,东南大学移动通信国家重点实验室教授。

刘升恒:紫金山实验室,东南大学移动通信国家重点实验室副教授。

王东明:紫金山实验室,东南大学移动通信国家重点实验室教授。

Junchao Ma:紫金山实验室。

Wei Xu,Chuan Zhang:紫金山实验室,东南大学移动通信国家重点实验室。

Hang Zhan:紫金山实验室。

Cheng Zhang:紫金山实验室,东南大学移动通信国家重点实验室。

张教:紫金山实验室博士后。

Jin Li:紫金山实验室。

朱敏:紫金山实验室,东南大学移动通信国家实验室副教授、博导。

Jianjie You,Dongjie Liu,Shiwen He,Guanghui He:紫金山实验室。

杨义峰:中国电信研究院专家委副主任。

刘洋:中国电信研究院6G研究中心团队总监。

吴建军:华为2012网络架构实验室主任。

卢建民:华为中央研究院无线技术实验室副主任。

李革:鹏城实验室人工智能研究中心主任。

Xiaowu Chen,Wenguang Chen:鹏城实验室。

高文:鹏城实验室主任、中国工程院院士。

致谢:

这项研究工作得到了国家重点研发计划项目2020YFB1806600、2020YFB1807200、2021YFB2900300、2018YFE0205900以及鹏城实验室重大重点项目PCL 2021A01-2的部分支持。

本文参考文献:

[1] National Science Foundation of United States. (2022) Resilient and intelligent NextG systems (RINGS) program.

[2] Hexa-X. (2022) Hexa-X vision on 6G and research challenges. 

[3] Ministry of Internal Affairs and Communications of Japan. (2020) Beyond 5G promotion strategy- roadmap towards 6G. 

[4] X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang et al., “Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” Science China Information Sciences, vol. 64, no. 1, pp. 1–74, 2021.

[5] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward 6G networks: Use cases and technologies,” IEEE Communications Magazine, vol. 58, no. 3, pp. 55–61, 2020.

[6] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, 2019.

[7] Y. Li, J. Huang, Q. Sun, T. Sun, and S. Wang, “Cognitive service architecture for 6G core network,” IEEE Transactions on Industrial Informatics, vol. 17, no. 10, pp. 7193–7203, 2021.

[8] F. Tariq, M. R. Khandaker, K.-K. Wong, M. A. Imran, M. Bennis, and M. Debbah, “A speculative study on 6G,” IEEE Wireless Communications, vol. 27, no. 4, pp. 118–125, 2020.

[9] G. Liu, Y. Huang, N. Li, J. Dong, J. Jin, Q. Wang, and N. Li, “Vision, requirements and network architecture of 6G mobile network beyond 2030,” China Communications, vol. 17, no. 9, pp. 92–104, 2020.

[10] J. Wan, X. Li, H.-N. Dai, A. Kusiak, M. Mart´ınez-Garc´ıa, and D. Li, “Artificial-intelligence-driven customized manufacturing factory: Key technologies, applications, and challenges,” Proceedings of the IEEE, vol. 109, no. 4, pp. 377–398, 2020.

[11] H. Chergui, L. Blanco, L. A. Garrido, K. Ramantas, S. Kukli ´nski, A. Ksentini, and C. Verikoukis, “Zero-touch AI-driven distributed management for energy-efficient 6G massive network slicing,” IEEE Network, vol. 35, no. 6, pp. 43–49, 2021.

[12] M. Sung, S.-R. Moon, E.-S. Kim, S. Cho, J. K. Lee, S.-H. Cho, T. Kawanishi, and H.-J. Song, “Design considerations of photonic THz communications for 6G networks,” IEEE Wireless Communications, vol. 28, no. 5, pp. 185–191, 2021.

[13] T. Harter, C. F¨ullner, J. N. Kemal, S. Ummethala, J. L. Steinmann, M. Brosi, J. L. Hesler, E. Br ¨undermann, A.-S. M¨uller, W. Freude et al., “Generalized Kramers–Kronig receiver for coherent terahertz communications,” Nature Photonics, vol. 14, no. 10, pp. 601–606, 2020.

[14] C.-X. Wang, J. Wang, S. Hu, Z. H. Jiang, J. Tao, and F. Yan, “Key technologies in 6G terahertz wireless communication systems: A survey,” IEEE Vehicular Technology Magazine, vol. 16, no. 4, pp. 27–37, 2021.

[15] D. Wang, C. Zhang, Y. Du, J. Zhao, M. Jiang, and X. You, “Implementation of a cloud-based cell-free distributed massive MIMO system,” IEEE Communications Magazine, vol. 58, no. 8, pp. 61–67, 2020.

[16] X. You, D. Wang, and J. Wang, Distributed MIMO and Cell-free Mobile Communication. Springer, 2021.

[17] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards lowlatency service delivery in a continuum of virtual resources: State-of-theart and research directions,” IEEE Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2557–2589, 2021.

[18] C. She, R. Dong, Z. Gu, Z. Hou, Y. Li, W. Hardjawana, C. Yang, L. Song, and B. Vucetic, “Deep learning for ultra-reliable and lowlatency communications in 6G networks,” IEEE Network, vol. 34, no. 5, pp. 219–225, 2020.

[19] X. Zhao, W. Chen, and H. V. Poor, “Achieving extremely low-latency in Industrial Internet of Things: Joint finite blocklength coding, resource block matching, and performance analysis,” IEEE Transactions on Communications, vol. 69, no. 10, pp. 6529–6544, 2021.

[20] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for 6G: Vision, enabling technologies, and applications,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 5–36, 2021.

[21]X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic network virtualization and pervasive network intelligence for 6G,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 1–30, 2022. 

[22][22] Y. Huang, S. Liu, C. Zhang, X. You, and H. Wu, “True-data testbed for 5G/B5G intelligent network,” Intelligent and Converged Networks, vol. 2, no. 2, pp. 133–149, 2021.

[23] 5G Infrastructure association white paper. (2021) European vision for the 6G network ecosystem.

[24] Next G Alliance white paper. (2022) Next G Alliance report: Roadmap to 6G.

[25] Samsung 6G vision white paper. (2020) 6G: The next hyper-connected experience for all. 

[26] NTT DOCOMO white paper. (2020) 5G evolution and 6G.

[27] Ericsson white paper. (2022) 6G-connecting a cyber-physical world.

[28] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of relational machine learning for knowledge graphs,” Proceedings of the IEEE, vol. 104, no. 1, pp. 11–33, 2016.

[29] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on knowledge graphs: Representation, acquisition, and applications,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 2, pp. 494–514, 2022.

[30] S. Liu, C. Zheng, Y. Huang, and T. Q. Quek, “Distributed reinforcement learning for privacy-preserving dynamic edge caching,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 749–760, 2022.

[31] C. Xu, S. Liu, Z. Yang, Y. Huang, and K.-K. Wong, “Learning rate optimization for federated learning exploiting over-the-air computation,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 12, pp. 3742–3756, 2021.

[32] W. He, C. Zhang, Y. Huang, and X. You, “Intelligent optimization of base station array orientations via scenario-specific modeling,” IEEE Transactions on Communications, vol. 70, no. 3, pp. 2117–2130, 2022.

[33] Y. Huang, J. Li, C. Zhang, and X. You, “Network slice dynamic configuration method, device, electronic device and storage medium,” 202110336480.9, 2021.

[34] S. Sesia, I. Toufik, and M. Baker, LTE-the UMTS long term evolution: From theory to practice. John Wiley & Sons, 2011.

[35] A. S. Hamza, S. S. Khalifa, H. S. Hamza, and K. Elsayed, “A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks,” IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 1642–1670, 2013.

[36] L. Liu, Y. Zhou, A. V. Vasilakos, L. Tian, and J. Shi, “Time-domain ICIC and optimized designs for 5G and beyond: A survey,” Science China Information Sciences, vol. 62, no. 2, pp. 1–28, 2019.

[37] F. Meng, S. Liu, Y. Huang, and Z. Lu, “Learning-aided beam prediction in mmWave MU-MIMO systems for high-speed railway,” IEEE Transactions on Communications, vol. 70, no. 1, pp. 693–706, 2022.

[38] C. Xu, S. Liu, C. Zhang, Y. Huang, Z. Lu, and L. Yang, “Multiagent reinforcement learning based distributed transmission in collaborative cloud-edge systems,” IEEE Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1658–1672, 2021.

[39] J. Zhang, Y. Huang, J. Wang, X. You, and C. Masouros, “Intelligent interactive beam training for millimeter wave communications,” IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp. 2034–2048, 2021.

[40] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1834–1850, 2017.

[41] D. Wang, “Wireless transmission techniques of cell-free massive MIMO for 6G mobile communications,” Mobile Communications, vol. 4, no. 7, pp. 10–15, 2021.

[42] Y. Guo, Z. Fan, A. Lu, P.Wang, D. Liu, X. Xia, and D.Wang, “Downlink transmission and channel estimation for cell-free massive MIMO-OFDM with DSDs,” EURASIP Journal on Advances in Signal Processing, vol. 2022, no. 1, pp. 1–12, 2022.

[43] T. Harter, S. Ummethala, M. Blaicher, S. Muehlbrandt, S. Wolf, M. Weber, M. M. H. Adib, J. N. Kemal, M. Merboldt, F. Boes et al., “Wireless THz link with optoelectronic transmitter and receiver,” Optica, vol. 6,

no. 8, pp. 1063–1070, 2019.

[44] L. Zhang, X. Pang, S. Jia, S. Wang, and X. Yu, “Beyond 100 Gb/s optoelectronic terahertz communications: Key technologies and directions,” IEEE Communications Magazine, vol. 58, no. 11, pp. 34–40, 2020.

[45] J. Zhang, M. Zhu, M. Lei, B. Hua, Y. Cai, Y. Zou, L. Tian, A. Li, Y. Wang, Y. Huang et al., “Real-time demonstration of 103.125-Gbps fiber–THz–fiber 2×2 MIMO transparent transmission at 360–430 GHz based on photonics,” Optics Letters, vol. 47, no. 5, pp. 1214–1217, 2022.

[46] Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla et al., “Microwave plasmonic mixer in a transparent fibre-wireless link,” Nature Photonics, vol. 12, no. 12, pp. 749–753, 2018.

[47] J. Yu, X. Li, and W. Zhou, “Tutorial: Broadband fiber-wireless integration for 5G+ communication,” APL Photonics, vol. 3, no. 11, p. 111101, 2018.

[48] V. Petrov, J. Kokkoniemi, D. Moltchanov, J. Lehtomaki, Y. Koucheryavy, and M. Juntti, “Last meter indoor terahertz wireless access: Performance insights and implementation roadmap,” IEEE Communications Magazine, vol. 56, no. 6, pp. 158–165, 2018.

[49] X. You, C. Zhang, B. Sheng, Y. Huang, C. Ji, Y. Shen, W. Zhou, and J. Liu, “Spatiotemporal 2-D channel coding for very low latency reliable MIMO transmission,” arXiv preprint arXiv:2201.03166, pp. 1–7, 2022.

喜欢
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
VisionLab-上海交通大学计算机视觉实验室
Principal Component Analysis Based Broadband Hybrid Precoding for Millimeter-Wave Massive MIMO Systems
贝尔实验室6G论文!
黄如
北京理工大学机械与车辆学院
Inhibiting RRM2 to enhance the anticancer activity of chemotherapy.pdf
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服