打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
第二节 气焊气割火焰及工艺参数的选择

第二节  气焊气割火焰及工艺参数的选择

 

  一、气焊气割火陷

  气焊的火焰是用来对焊件和填充金属进行加热、熔化和焊接的热源;气割的火焰是预热的热源;火焰的气流又是熔化金属的保护介质。焊接火焰直接影响到焊接质量和焊接生产率,气焊气割时要求焊接火焰应有足够的温度,体积要小,焰芯要直,热量要集中;还应要求焊接火焰具有保护性,以防止空气中的氧、氮对熔化金属的氧化及污染。

  ()焊接切割的火焰分类

  气焊气割的气体火焰包括氧—乙炔焰、氢氧焰及液化石油气体[丙烷(C3H8)含量占50%~80%,此外还有丁烷(C4H10)、丁烯(C4H8)]燃烧的火焰。乙炔与氧混合燃烧形成的火焰,称为氧—乙炔焰。氧—乙炔焰具有很高的温度(3200),加热集中,因此,是气焊气割中主要采用的火焰。

  氢与氧混合燃烧形成的火焰,称为氢氧焰。氢氧焰是最早的气焊利用的气体火焰,由于其燃烧温度低(温度可达2770),且容易发生爆炸事故,未被广泛应用于工业生产,目前主要用于铅的焊接及水下火焰切割等。

  液化石油气燃烧的温度比氧-乙炔火焰要低(丙烷在氧气中燃烧温度为20002850)。液化石油气体燃烧的火焰主要用于金属切割,用于气割时,金属预热时间稍长,但可以减少切口边缘的过烧现象,切割质量较好,在切割多层叠板时,切割速度比使用乙炔快20%~30%。液化石油气体燃烧的火焰除越来越广泛地应用于钢材的切割外,还用于焊接有色金属。国外还有采用乙炔与液化石油气体混合,作为焊接气源。

  乙炔(C2H2)在氧气(O2)中的燃烧过程可以分为两个阶段,首先乙炔在加热作用下被分解为碳(C)和氢(H2),接着碳和混合气中的氧发生反应生成一氧化碳(CO),形成第一阶段的燃烧;随后在第二阶段的燃烧是依靠空气中的氧进行的,这时一氧化碳和氢气分别与氧发生反应分别生成二氧化碳(CO2)和水(H2O)。上述的反应释放出热量,即乙炔在氧气中燃烧的过程是一个放热的过程。

  氧—乙炔火焰根据氧和乙炔混合比的不同,可分为中性焰、碳化焰和氧化焰三种类型,其构造和形状如图22所示。

  ()中性焰

  中性焰是氧与乙炔体积的比值(O2C2H2)1112的混合气燃烧形成的气体火焰,中性焰在第一燃烧阶段既无过剩的氧又无游离的碳。当氧与丙烷容积的比.值(O2C3H8)35时,也可得到中性焰。中性焰有三个显著区别的区域,分别为焰芯、内焰和外焰,如图22(a)所示。

 

2-2  氧—乙炔焰的构造和形状

1.焰芯  2.内焰  3.外焰

 

  1.焰芯  中性焰的焰芯呈尖锥形,色白而明亮,轮廓清楚。焰芯由氧气和乙炔组成,焰芯外表分布有一层由乙炔分解所生成的碳素微粒,由于炽热的碳粒发出明亮的白光,因而有明亮而清楚的轮廓。

  在焰芯内部进行着第一阶段的燃烧。焰芯虽然很亮,但温度较低(8001200),这是由于乙炔分解而吸收了部分热量的缘故。

  2.内焰  内焰主要由乙炔的不完全燃烧产物,即来自焰芯的碳和氢气与氧气燃烧的生成物一氧化碳和氢气所组成。内焰位于碳素微粒层外面,呈蓝白色,有深蓝色线条。内焰处在焰芯前24mm部位,燃烧量激烈,温度最高,可达31003150℃。气焊时,一般就利用这个温度区域进行焊接,因而称为焊接区。

  由于内焰中的一氧化碳(CO)和氢气(H2)能起还原作用,所以焊接碳钢时都在内焰进行,将工件的焊接部位放在距焰芯尖端24mm处。内焰中的气体中一氧化碳的含量占60%~66%,氢气的含量占30%~34%,由于对许多金属的氧化物具有还原作用,所以焊接区又称为还原区。

  3.外焰  处在内焰的外部,外焰的颜色从里向外由淡紫色变为橙黄色。在外焰,来自内焰燃烧生成的一氧化碳和氢气与空气中的氧充分燃烧,即进行第二阶段的燃烧。外焰燃烧的生成物是二氧化碳和水。

  外焰温度为12002500℃。由于二气化碳(CO2)和水(H2O)在高温时容易分解,所以外焰具有氧化性。

  中性焰应用最广泛,一般用于焊接碳钢、紫铜和低合金钢等。

  中性焰的温度是沿着火焰轴线而变化的,如图23所示。中性焰温度最高处在距离焰芯末端24mm的内焰的范围内,此处温度可达3150℃,离此处越远,火焰温度越低。

 

2-3  中性焰的温度分布情况

 

  此外,火焰在横断面上的温度是不同的,断面中心温度最高,越向边缘,温度就越低。

  由于中性焰的焰芯和外焰温度较低,而且内焰具有还原性,内焰不但温度最高还可以改善焊缝金属的性能,所以,采用中性焰焊接切割大多数的金属及其合金时,都利用内焰。

  ()碳化焰

  碳化焰是氧与乙炔的体积的比值(O2C2H2)小于11时的混合气燃烧形成的气体火焰,因为乙炔有过剩量,所以燃烧不完全。碳化焰中含有游离碳,具有较强的还原作用和一定的渗碳作用。

  碳化焰可分为焰芯、内焰和外焰三部分,如图22(b)所示。碳化焰的整个火焰比中性焰长而柔软,而且随着乙炔的供给量增多,碳化焰也就变得越长、越柔软,其挺直度就越差。当乙炔的过剩量很大时,由于缺乏使乙炔完全燃烧所需要的氧气,火焰开始冒黑烟。

  碳化焰的焰芯较长,呈蓝白色,由一氧化碳(CO)、氢气(H2)和碳素微粒组成。碳化焰的外焰特别长,呈橘红色,由水蒸汽、二氧化碳、氧气、氢气和碳素微粒组成。

  碳化焰的温度为27003000℃。由于在碳化焰中有过剩的乙炔,它可以分解为氢气和碳,在焊接碳钢时,火焰中游离状态的碳会渗到熔池中去,增高焊缝的含碳量,使焊缝金属的强度提高而使其塑性降低。此外,过多的氢会进入熔池,促使焊缝产生气孔和裂纹。因而碳化焰不能用于焊接低碳钢及低合金钢。但轻微的碳化焰应用较广,可用于焊接高碳钢、中合金钢、高合金钢、铸铁、铝和铝合金等材料。

  ()氧化焰

  氧化焰是氧与乙炔的体积的比值(O2C2H2)大子12时的混合气燃烧形成的气体火焰,氧化焰中有过剩的氧,在尖形焰芯外面形成了一个有氧化性的富氧区,其构造和形状如图22(c)所示。

  氧化焰由于火焰中含氧较多,氧化反应剧烈,使焰芯、内焰、外焰都缩短,内焰很短,几乎看不到。氧化焰的焰芯呈淡紫蓝色,轮廓不明显;外焰呈蓝色,火焰挺直,燃烧时发出急剧的“嘶嘶”声。氧化焰的长度取决于氧气的压力和火焰中氧气的比例,氧气的比例越大,则整个火焰就越短,噪声也就越大。

  氧化焰的温度可达31003400℃。由于氧气的供应量较多,使整个火焰具有氧化性。如果焊接一般碳钢时,采用氧化焰就会造成熔化金属的氧化和合金元素的烧损,使焊缝金属氧化物和气孔增多并增强熔池的沸腾现象,从而较大地降低焊接质量。所以,一般材料的焊接,绝不能采用氧化焰。但在焊接黄铜和锡青铜时,利用轻微的氧化焰的氧化性,生成的氧化物薄膜覆盖在熔池表面,可以阻止锌、锡的蒸发。由于氧化焰的温度很高,在火焰加热时为了提高效率,常使用氧化焰。气割时,通常使用氧化焰。

  ()各种火焰的适用范围

  以上叙述的中性焰、碳化焰、氧化焰,因其性质不同,适用于焊接不同的材料。氧与乙炔不同体积比值(O2C2H2)对焊接质量关系很大。各种金属材料气焊时火焰种类的选择详见表21

 

21  各种金属材料气焊火焰的选择

焊件材料

应用火焰

焊件材料

应用火焰

低碳钢

中性焰或轻微碳化焰

铬镍不锈钢

中性焰或轻微碳化焰

中碳钢

中性焰或轻微碳化焰

紫  铜

中性焰

低合金钢

中性焰

   

轻微氧化焰

高碳钢

轻微碳化焰

黄  铜

氧化焰

灰铸铁

碳化焰或轻微碳化焰

铝及其合金

中性焰或轻微碳化焰

高速钢

碳化焰

铅、锡

中性焰或轻微碳化焰

 

轻微氧化焰

蒙乃尔合金

碳化焰

镀锌铁皮

轻微碳化焰

碳化焰或轻微碳化焰

铬不锈钢

中性焰或轻微碳化焰

硬质合金

碳化焰

 

  二、气焊与气割主要工艺参数

  ()气焊主要工艺参数

  气焊的焊接工艺参数包括焊丝的牌号和直径、熔剂、火焰种类、火焰能率、焊炬型号和焊嘴的号码、焊嘴倾角和焊接速度等。由于焊件的材质、气焊的工作条件、焊件的形状尺寸和焊接位置、气焊工的操作习惯和气焊设备等的不同,所选用的气焊焊接工艺参数不尽相同。

  下面对一般的气焊工艺参数(即焊接规范)及其对焊接质量的影响分别说明如下:

  1.焊丝直径的选择

  焊丝的直径应根据焊件的厚度、坡口的形式、焊缝位置、火焰能率等因素确定。在火焰能率一定时,即焊丝熔化速度在确定的情况下,如果焊丝过细,则焊接时往往在焊件尚未熔化时焊丝已熔化下滴,这样,容易造成熔合不良和焊波高低不平、焊缝宽窄不一等缺陷;如果焊丝过粗,则熔化焊丝所需要的加热时间就会延长,同时增大了对焊件的加热范围,使工件焊接热影响区增大,容易造成组织过热,降低焊接接头的质量。

  焊丝直径常根据焊件厚度初步选择,试焊后再调整确定。碳钢气焊时焊丝直径的选择可参照表22

 

2-2  焊件厚度与焊丝直径的关系  (mm)

工件厚度

1020

2030

3050

50100

1015

焊丝直径

1020

或不用焊丝

2030

3040

3050

4060

 

  在多层焊时,第一、二层应选用较细的焊丝,以后各层可采用较粗的焊丝。一般平焊应比其它焊接位置选用粗一号的焊丝,右焊法比左焊法选用的焊丝要适当粗一些。

  2.火焰性质的选择

  一般来说,需要尽量减少元素的烧损时,应选用中性焰;对需要增碳及还原气氛时,应选用碳化焰;当母材含有低沸点元素[如锡(Sn)、锌(Zn)]时,需要生成覆盖在熔池表面的氧化物薄膜,以阻止低熔点元素蒸发,应选用氧化焰。总之,火焰性质选择应根据焊接材料的种类和性能。

  由于气焊焊接质量和焊缝金属的强度与火焰种类有很大的关系,因而在整个焊接过程中应不断地调节火焰成分,保持火焰的性质,从而获得质量好的焊接接头。

  不同金属材料的气焊所采用焊接火焰的性质参照表21

  3.火焰能率的选择

  火焰能率指单位时间内可燃气体(乙炔)的消耗量,单位为Lh。火焰能率的物理意义是单位时间内可燃气体所提供的能量。

  火焰能率的大小是由焊炬型号和焊嘴号码大小来决定的。焊嘴号越大火焰能率也越大。所以火焰能率的选择实际上是确定焊炬的型号和焊嘴的号码。火焰能率的大小主要取决于氧、乙炔混合气体中,氧气的压力和流量(消耗量)及乙炔的压力和流量(消耗量)。流量的粗调通过更换焊炬型号和焊嘴号码实现;流量的细调通过调节焊炬上的氧气调节阀和乙炔调节阀来实现。

  火焰能率应根据焊件的厚度、母材的熔点和导热性及焊缝的空间位置来选择。如焊接较厚的焊件、熔点较高的金属、导热性较好的铜、铝及其合金时,就要选用较大的火焰能率,才能保证焊件焊透;反之,在焊接薄板时,为防止焊件被烧穿,火焰能率应适当减小。平焊缝可比其它位置焊缝选用稍大的火焰能率。在实际生产中,在保证焊接质量的前提下,应尽量选择较大的火焰能率。

  4.焊嘴倾斜角的选择

  焊嘴的倾斜角是指焊嘴中心线与焊件平面之间的夹角。详见图24。焊嘴的倾斜角度的大小主要是根据焊嘴的大小、焊件的厚度、母材的熔点和导热性及焊缝空间位置等因素综合决定的。当焊嘴倾斜角大时,因热量散失少,焊件得到的热量多,升温就快;反之,热量散失多,焊件受热少,升温就慢。

  一般低碳钢气焊时,焊嘴的倾斜角度与工件厚度的关系详见图24。一般说来,在焊接工件的厚度大、母材熔点较高或导热性较好的金属材料时,焊嘴的倾斜角要选得大一些;反之,焊嘴倾斜角可选得小一些。

 

2-4  焊嘴倾斜角与焊件厚度的关系

 

  焊嘴的倾斜角度在气焊的过程中还应根据施焊情况进行变化。如在焊接刚开始时,为了迅速形成熔池,采用焊嘴的倾斜角度为80°~90°;当焊接结束时,为了更好地填满弧坑和避免焊穿或使焊缝收尾处过热,应将焊嘴适当提高,焊嘴倾斜角度逐渐减小,并使焊嘴对准焊丝或熔池交替地加热。

  在气焊过程中,焊丝对焊件表面的倾斜角一般为30°~40°,与焊嘴中心线的角度为90°~100°,如图25所示。

 

2-5  焊嘴与焊丝的相对位置

 

  5.焊接速度的选择

  焊接速度应根据焊工的操作熟练程度,在保证焊接质量的前提下,尽量提高焊接速度,以减少焊件的受热程度并提高生产率。一般说来,对于厚度大、熔点高的焊件,焊接速度要慢些,以避免产生未熔合的缺陷;而对于厚度薄、熔点低的焊件,焊接速度要快些,以避免产生烧穿和使焊件过热而降低焊接质量。

  ()气割主要工艺参数

  气割工艺参数主要包括割炬型号和切割氧压力、气割速度、预热火焰能率、割嘴与工件间的倾斜角、割嘴离工件表面的距离等。

  (1)割炬型号和切割氧压力  被割件越厚,割炬型号、割嘴号码、氧气压力均应增大,氧气压力与割件厚度、割炬型号、割嘴号码的关系详见表210。当割件较薄时,切割氧压力可适当降低。但切割氧的压力不能过低,也不能过高。若切割氧压力过高,则切割缝过宽,切割速度降低,不仅浪费氧气,同时还会使切口表面粗糙,而且还将对割件产生强烈的冷却作用。若氧气压力过低,会使气割过程中的氧化反应减慢,切割的氧化物熔渣吹不掉,在割缝背面形成难以清除的熔渣粘结物,甚至不能将工件割穿。

  除上述切割氧的压力对气割质量的影响外,氧气的纯度对氧气消耗量、切口质量和气割速度也有很大影响。氧气纯度降低,会使金属氧化过程缓慢、切割速度降低,同时氧的消耗量增加。图26为氧气纯度对气割时间和氧气消耗量的影响曲线,在氧气纯度为975%~995%的范围内,氧气纯度每降低l%时,气割1m长的割缝,气割时间将增加10%~15%;氧气消耗量将增加25%~35%。

 

26  氧气纯度对气割时间和氧化消耗量的影响

 

  1.对据割时间的影响

  2.对氧气消耗量的影响

  氧气中的杂质如氮等在气割过程中会吸收热量,并在切口表面形成气体薄膜,阻碍金属燃烧,从而使气割速度下降和氧气消耗量增加,并使切口表面粗糙。因此,气割用的氧气的纯度应尽可能地提高,一般要求在995%以上。若氧气的纯度降至95%以下,气割过程将很难进行。

  (2)气割速度  一般气割速度与工件的厚度和割嘴形式有关,工件愈厚,气割速度愈慢,相反,气割速度应较快。气割速度由操作者根据割缝的后拖量自行掌握。所谓后拖量,是指在氧气切割的过程中,在切割面上的切割氧气流轨迹的始点与终点在水平方向上的距离,如图27所示。

 

27  后拖量示意图

 

  在气割时,后拖量总是不可避免的,尤其气割厚板时更为显著。合适的气割速度,应以使切口产生的后拖量比较小为原则。若气割速度过慢,会使切口边缘不齐,甚至产生局部熔化现象,割后清渣也较困难;若气割速度过快,会造成后拖量过大,使割口不光洁,甚至造成割不透。

  总之,合适的气割速度可以保证气割质量,并能降低氧气的消耗量。

  (3)预热火焰能率  预热火焰的作用是把金属工件加热至金属在氧气中燃烧的温度,并始终保持这一温度,同时还使钢材表面的氧化皮剥离和熔化,便于切割氧流与金属接触。

  气割时,预热火焰应采用中性焰或轻微氧化焰。碳化焰因有游离碳的存在,会使切口边缘增碳,所以不能采用。在切割过程中,要注意随时调整预热火焰,防止火焰性质发生变化。

 .预热火焰能率的大小与工件的厚度有关,工件愈厚,火焰能率应愈大,但在气割时应防止火焰能率过大或过小的情况发生。如在气割厚钢板时,由于气割速度较慢,为防止割缝上缘熔化,应相应使火焰能率降低;若此时火焰能率过大,会使割缝上缘产生连续珠状钢粒,甚至熔化成圆角,同时还造成割缝背面粘附熔渣增多,而影响气割质量。如在气割薄钢板时,因气割速度快,可相应增加火焰能率,但割嘴应离工件远些,并保持一定的倾斜角度;若此时火焰能率过小,使工件得不到足够的热量,就会使气割速度变慢,甚至使气割过程中断。

  (4)割嘴与工件间的倾角  割嘴倾角的大小主要根据工件的厚度来确定。一般气割4mm以下厚的钢板时,割嘴应后倾25°~45°;气割420mm厚的钢板时,割嘴应后倾20°~30°;气割2030mm厚的钢板时,割嘴应垂直于工件;气割大于30mm厚的钢板时,开始气割时应将割嘴前倾20°~30°,待割穿后再将割嘴垂直于工件进行正常切割,当快割完时,割嘴应逐渐向后倾斜20°~30°。割嘴与工作间的倾角详见图28

 

28  割嘴与工件间的倾角示意图

 

  割嘴与工件间的倾角对气割速度和后拖量产生直接影响,如果倾角选择不当,不但不能提高气割速度,反而会增加氧气的消耗量,甚至造成气割困难。

  (5)割嘴离工件表面的距离  通常火焰焰芯离开工件表面的距离应保持在35mm的范围内,这样,加热条件最好,而且渗碳的可能性也最小。如果焰芯触及工件表面,不仅会引起割缝上缘熔化,还会使割缝渗碳的可能性增加。

  一般来说,切割薄板时,由于切割速度较快,火焰可以长些,割嘴离开工件表面的距离可以大些;切割厚板时,由于气割速度慢,为了防止割缝上缘熔化,预热火焰应短些,割嘴离工件表面的距离应适当小些,这样,可以保持切割氧流的挺直度和氧气的纯度,使切割质量得到提高。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
气割中那些你懂得却说不出来的东西
气焊操作要领
第一章气焊与气割
气焊、气割工操作规程
气割如何才能割整齐?
全国新版电焊工考试题库及模拟考试答案
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服