打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
第三章 智能制造的时代

“工业4.0”的核心是智能制造,智能制造主要是基于信息物理系统(CPS)。信息是指软件,物理是指硬件,软件的信息化+硬件的自动化=信息物理系统的智能化。

出处:VINT实验室

自动化只是单纯的控制,智能化则是在控制的基础上,通过物联网传感器采集海量生产数据,通过互联网汇集到云计算数据中心,然后通过信息管理系统对大数据进行分析、挖掘,从而制定出正确的决策。

这些决策附加给自动化设备的是“智能”,从而提高生产灵活性和资源利用率,增强顾客与商业合作伙伴之间的紧密关联度,并提升工业生产的商业价值。

(一)生产智能化

生产智能化通过基于信息化的机械、知识、管理和技能等多种要素的有机结合,从着手生产制造之前,就按照交货期、生产数量、优先级、工厂现有资源(人员、设备、物料)的有限生产能力,自动制订出科学的生产计划。从而,提高生产效率,实现生产成本的大幅下降,同时实现产品多样性、缩短新产品开发周期,从而最终实现工厂运营的全面优化变革。

(二)设备智能化

在生产线、生产设备中配备的传感器,能够实时抓取数据,然后经过无线通信连接互联网,传输数据,对生产本身进行实时的监控。设备传感和控制层的数据与企业信息系统融合形成了信息物理系统(CPS),使得生产大数据传到云计算数据中心进行存储、分析,形成决策并反过来指导设备运转。设备的智能化直接决定了“工业4.0”所要求的智能生产水平。

(三)能源管理智能化

能源管理智能化将对生产能耗进行管理,以最具经济效益的方式,部署工业节能减排与综合利用的智能化系统架构,从资源、原材料、研发设计、生产制造到废弃物回收再利用处理,形成绿色产品生命周期管理的循环。

(四)供应链管理智能化

供应链管理智能化将统一工厂的零部件库存和供应商的生产流程,从而保证工厂的零部件库存的最小化,降低库存带来的风险,降低生产成本。

信息物理系统

“工业4.0”其实就是基于信息物理系统(CPS)实现智能工厂,最终实现的是制造模式的变革。

其实,CPS概念最早由美国国家科学基金会(NSF)在2006提出,被认为有望成为继计算机、互联网之后世界信息技术的第三次浪潮。

CPS的核心是3C(Computing、Communication、Control)的融合。

信息世界是指工业软件和管理软件、工业设计、互联网和移动互联网等。

物理世界是指能源环境、人、工作环境、局域通信以及设备与产品等。

CPS的最终目标是实现信息世界和物理世界的完全融合,构建一个可控、可信、可扩展并且安全高效的CPS网络,并最终从根本上改变人类构建工程物理系统的方式。

CPS概念是从上世纪80年代的嵌入式系统演变而来。经历1990年的泛在计算、1994年的普适计算、2000年的环境智能,直到2006年才发展成为了信息物理系统。

据资料显示,2005年5月,美国国会要求美国科学院评估美国的技术竞争力,并提出维持和提高这种竞争力的建议。5个月后,基于此项研究的报告《站在风暴之上》问世。在此基础上,于2006年2月美国发布《美国竞争力计划》,将信息物理系统CPS列为重要的研究项目。

根据英国电气工程师协会( U.K. Institution of Electrical Engineer)的定义,嵌入式系统为控制、监视或辅助设备、机器或用于工厂运作的设备。与个人计算机这样的通用计算机系统不同,嵌入式系统通常执行的是带有特定要求的预先定义的任务。由于嵌入式系统只针对一项特殊的任务,设计人员能够对它进行优化,减小尺寸降低成本。

嵌入式系统是软件程序对硬件的一对一的控制。

一旦,基于高性能软件的嵌入式系统与融合在数字网络中的专业用户接口之间,发生的相互作用,必将诞生全新的系统功能性世界。举一个简单的例子,智能手机囊括许多应用和服务,已经远远超出设备本身通话功能。由于全新的划时代应用和服务的提供商将不断涌现,渐渐形成新价值链,所以,CPS也将对现有业务与市场模式带来范式上的转变。

CPS就是嵌入式系统加上网络控制功能,实现了多个软件对多个硬件控制的网络。其中网络功能主要是为了实现控制目的,利用物联网、传感器的无线连接和感知功能,实现进一步管理和控制。

在“工业3.0”时代,传统的自动化系统是封闭的,许多嵌入式设备并没有预留外部接口。“工业4.0”在自动化的基础上,通过网络功能对嵌入式系统进行了扩展,使得汇集计算、通信和控制能力于一体的CPS成为智能工厂的核心。

CSP是融合技术,包括计算、通信以及控制(传感器、执行器等)。

中国科学院何积丰院士指出:“CPS,从广义上理解,就是一个在环境感知的基础上,深度融合了计算、通信和控制能力的可控可信可扩展的网络化物理设备系统,它通过计算进程和物理进程相互影响的反馈循环实现深度融合和实时交互来增加或扩展新的功能,以安全、可靠、高效和实时的方式监测或者控制一个物理实体。”

在“工业4.0”时代,进一步丰富了CPS的3C融合概念。在计算、通信和控制的基础上,增加了内容(Content,语义分析)、社群(Community,协同合作)、与定制化(Customization,个性化定制)。也可以说,从3C到6C反映了制造业思维和制造业模式的变革。6C条件下的智能工厂通过网络协同制造,可以实现全产业链的智能生产,实现生产的自律调整,生产出智能产品。

同时,6C条件下的智能工厂,可以实现可视化生产,预测性制造管理。传统的制造过程中,存在许多无法定量的因素,包括加工过程中的设备性能下降、零部件的突发故障、残次品的返工等。通过可视化,实时监控生产数据,掌控那些不确定因素,使得智能工厂管理者能客观地评估制造和设备的使用状态,并通过管理实现预测性制造,起到降低成本,提升运行效率,改进产品质量的作用。

目前所说的制造业信息系统,首先强调的是CAD(Computer Aided Design,计算机辅助设计)、CAM (Computer Aided Manufacturing,计算机辅助制造)等工业软件和PPS(生产计划控制系统)、PLM(产品生命周期管理)等信息化管理系统。主要应用于由上而下的集中式中央控制系统。

而“工业4.0”通过CPS实现生产工艺与信息系统融合,体现了生产模式从“集中型”到“分散型”的范式转变,正是因为有了让传统生产过程理论发生颠覆的技术进步,这一切才成为可能。同时,分散型智能利用,代表了生产制造过程的虚拟世界与物理世界之间的交互关系,在构建智能物体网络中发挥重要作用。

未来,生产设备不再只是“加工”产品,取而代之的是,智能化的生产设备通过网络的形式紧密地联接在一起,而产品则通过网络通信向生产设备传达如何采取正确操作。更具动态性和灵活性,从而能挖掘出更多优化的可能,提高生产效率。

出处:德国工业4.0最终报告

CPS连接了信息世界与物理现实世界,使智能物体互相通信、相互作用,创造一个真正的网络世界。生产设备中的嵌入式系统与生产线上的物联网传感器是构成CPS的要素之一,这些技术被称为“物理技术”。但是,CPS 体现了相对当前嵌入式系统和物联网的进一步进化,与互联网或者网上可搜集的数据、服务结合在一起,实现更加广泛的基于创新型应用或过程的新物理空间,淡化物理世界与信息世界的界限。

也就是,CPS通过提供构建物联网的基础部分,并且与“服务互联网”一体化,实现“工业 4.0”。使得传统制造业中的物理技术就像互联网让个人相互通信、相互作用的关系发生变革一样,将给我们与物理现实世界之间的相互作用关系带来新的、根本性变化。

未来,CPS将联接数百亿的物联网传感器、数十亿的人和上千万的服务。就智能制造而言,CPS对涵盖自动化、生产技术、汽车、机械工程、能源、运输以及远程医疗等众多工业部门、应用领域,具有非常重要的意义。CPS不仅可以降低实际成本,提高能源、时间等的效率,还能降低二氧化碳(CO2)排放水平,在保护环境上发挥重大作用。因CPS而实现的许多应用,将产生新附加价值链和业务模式。

生产系统,智能工厂的产品、资源及处理过程因CPS的存在,将具有非常高水平的实时性,同时在资源、成本节约中也颇具优势。智能工厂将按照重视可持续性的服务中心的业务来设计。因此,灵活性、自适应以及机械学习能力等特征,甚至风险管理都是其中不可或缺的要素。

智能工厂的设备将实现高级自动化,主要是由基于自动观察生产过程的CPS的生产系统的灵活网络来实现的。通过可实时应对的灵活的生产系统,能够实现生产工程的彻底优化。同时,生产优势不仅仅是在特定生产条件下一次性体现,也可以实现多家工厂、多个生产单元所形成的世界级网络的最优化。

智能工厂

“工业 4.0”从嵌入式系统向信息物理系统(CPS)进化,形成智能工厂。智能工厂作为未来第四次工业革命的代表,不断向实现物体、数据以及服务等无缝连接的互联网 (物联网、数据网和服务互联网)的方向发展。

物联网和服务互联网分别位于智能工厂的三层信息技术基础架构的底层和顶层。最顶层中,与生产计划、物流、能耗和经营管理相关的ERP、SCM、CRM等,和产品设计、技术相关的PLM处在最上层,与服务互联网紧紧相连。中间一层,通过CPS物理信息系统实现与生产设备和生产线控制、调度等相关功能。从智能物料供应,到智能产品的产出,贯通整个产品生命周期管理。最底层则通过物联网技术实现控制、执行、传感,实现智能生产。

同时“智能工厂”的“智能生产”,重点研究智能化生产系统及过程,以及网络化分布式生产设施的实现,其核心就是在整个工业生产过程中的应用中,通过信息物理系统(CPS),利用物联网的技术、软件技术和通信技术,加强信息管理和服务,提高生产过程的可控性,从而实现研发、生产、制造工艺及工业控制等全方位的信息覆盖,全面控制各种信息,确保各个生产制造环节都能处于最优状态。从而引导制造业向智能化转型。

智能设备

出处:德国人工智能研究中心[DFKI]

在未来的智能工厂,每个生产环节清晰可见、高度透明,整个车间有序且高效地运转。“工业4.0”中,自动化设备在原有的控制功能基础上,附加一定新功能,就可以实现产品生命周期管理、安全性、可追踪性与节能性等智能化要求。这些为生产设备添加的新功能是指通过为生产线配置众多传感器,让设备具有感知能力,将所感知的信息通过无线网络传送到云计算数据中心,通过大数据分析决策进一步使得自动化设备具有自律管理的智能功能,从而实现设备智能化。

“工业4.0”中,在生产线、生产设备中配备的传感器,能够实时抓取数据,然后经过无线通信连接互联网,传输数据,对生产本身进行实时的监控。设备传感和控制层的数据与企业信息系统融合形成了信息物理系统(CPS),使得生产大数据传到云计算数据中心进行存储、分析,形成决策并反过来指导设备运转。设备的智能化直接决定了“工业4.0”所要求的智能生产水平。

智能生产

随着移动互联网和云计算、大数据技术的发展,计算机到智能手机等移动终端的演进,越来越多功能强大的智能设备以无线方式实现了与互联网或设备之间的互联。由此衍生出物联网、服务互联网和数据网,推动着物理世界和信息世界以信息物理系统(CPS)的方式相融合。也可以说,是这种技术进步使得制造业领域实现了资源、信息、物品、设备和人的互通互联。

通过互通互联,云计算、大数据这些新的互联网技术,和以前的自动化的技术结合在一起,生产工序实现纵向系统上的融合,生产设备和设备之间,工人与设备之间的合作,把整个工厂内部的联结起来,形成信息物理系统,互相之间可以合作、可以响应,能够开展个性化的生产制造,可以调整产品的生产率,还可以调整利用资源的多少、大小,采用最节约资源的方式。

“工业4.0”时代,生产智能化通过基于信息化的机械、知识、管理和技能等多种要素的有机结合,从着手生产制造之前,就按照交货期、生产数量、优先级、工厂现有资源(人员、设备、物料)的有限生产能力,自动制订出科学的生产计划。从而,提高生产效率,实现生产成本的大幅下降,同时实现产品多样性、缩短新产品开发周期,从而最终实现工厂运营的全面优化变革。

也就是,“工业4.0”时代的智能生产将从资源驱动演变成了信息驱动。

智能产品

传统制造业时代,材料、能源和信息是工厂生产的三个要素。传统制造业发展的历史,就是工厂利用材料、能源和信息进行物质生产的历史。

也可以说,材料、能源和信息领域的任何技术革命,必然导致生产方式的革命和生产力的飞跃发展。

出处:德国工业4.0最终报告

“工业4.0”时代,在智能工厂中,CRM(Customer Relationship Management,客户关系管理)、PDM(Product Data Management,产品数据管理)、SCM(Supply chain management,供应链管理)等软件管理系统可能都将互联。届时,接到顾客订单后的一瞬间,工厂就会立即自动地向原材料供应商采购原材料。原材料到货后,将被赋予数据,“这是给某某客户生产的某某产品的某某工艺中的原材料”,使“原材料”带有信息。

带有信息的原材料也就意味着拥有自己的用途或目的地。如果,在生产过程中,当原材料一旦被错误配送到其他生产线,它就会通过与生产设备开展“对话”,返回属于自己的正确的生产线;如果,生产机器之间的原材料不够用,同样,生产机器也可以向订单系统进行“交涉”,来增加原材料数量;最终,即便是原材料嵌入到产品内之后,由于它还保存着路径流程信息,将会很容易实现追踪溯源。

网络协同

在传统的制造业生产模式中,无论是工厂还是供应商,都需要为制造业的零部件或原材料的库存付出一定的成本支出,由于供应商和工厂之间的信息不对称和非自动的信息交换,生产的模式只能采用按计划或按库存生产的模式,灵活性和效率受到了约束。

“工业4.0”时代,复杂的制造系统在一定程度上也加速了产业组织结构的转型。传统的大型企业集团掌控的供应链主导型将向产业生态型演变,平台技术以及平台型企业将在产业生态中的展现出更多的作用。因此,企业竞争战略的重点将不再是做大规模,而将是智能化的供应链管理,在不断变化的动态环境中获得和保持动态的供需协调能力。

供应链管理智能化将统一工厂的零部件库存和供应商的生产流程,从而保证工厂的零部件库存的最小化,降低库存带来的风险,降低生产成本。供应链管理智能化要求企业间的信息采用基于事件驱动的方式交换信息,信息的交换是实时地,并且对方同样可以做出实时地反应,供应链上不同的企业的运作效率与在同一个企业中的运作一样敏捷,满足不断变化的需求的适应性。供应链管理智能化将为供应链上的企业带来更大的利益,供应链上各个企业的协同制造将为降低制造成本,物流成本,缩短制造周期,提供更好的服务提供有力的保障。

未来制造业中,每个工厂是独立运作的模式,每个工厂都有独立运行的生产管理系统,或者采用一套生产管理系统来管理所有的工厂的操作。但是随着企业的发展,企业设置有不同的生产基地及多个工厂,工厂之间往往需要互相调度,合理地利用人力、设备、物料等资源,企业中每个工厂之间的信息的流量越来越多,实时性的要求越来越高,同时每个工厂的数据量和执行的速度的要求也越来越高。这就要求不同工厂之间能够做到网络协同,确保实时的信息传递与共享。

出处:ARC公司

实际上,早在2000年,国际著名的咨询机构ARC针对生产制造模式新的发展,详细地分析了自动化、制造业以及信息化技术发展现状,从科技发展趋势对生产制造可能产生影响的角度,作出过全面的调查研究,并提出了用工程、生产制造、供应链三个维度描述的数字工厂模型。

从生产流程管理、企业业务管理一直到研究开发产品生命周期的管理而形成的“协同制造模式”(Collaborative Manufacturing Model,CMM),使得制造管理、产品设计、产品服务生命周期和供应链管理、客户关系管理有机地融合在一个完整的企业与市场的闭环系统之中,使企业的价值链从单一的制造环节向上游设计与研发环节延伸,企业的管理链也从上游向下游生产制造控制环节拓展,形成一个集成了工程、生产制造、供应链和企业管理的网络协同制造系统。

“工业4.0”也在一定程度上借用了CMM的理论。“工业4.0”定义了制造商、供应商乃至开发商之间的网络协同结构,主要目的是实现市场与研发的协同、研发与生产的协同、管理与通信的协同,从而形成一个完整的制造网络,由多个制造企业或参与者组成,它们相互交换商品和信息,共同执行业务流程。企业、价值链和产品生命周期这三个维度贯穿于各个价值链中的制造参与者之间。居于上方的是管理职能,下方是制造职能。

2011年底,美国学者发布了一份名为《捕捉Apple全球供应网络利润》的报告,其中针对iPhone手机利润分配的研究显示,2010年Apple公司每卖出一台iPhone,就独占其中58.5%的利润,而富士康组装利润仅为1.8%。

iPhone手机的系列产品包装内一如既往地写着,“Designed by Apple in California,Assembled in China”。意即“Apple是在美国本土西部太平洋沿岸的加州进行了产品研发与设计,在中国实施的产品组装”。但是,除了很少一部分零部件之外,其他的大多零部件都不是Apple公司生产的,这已经不是一个秘密了。Apple公司对全球的各类优秀零部件供应商的产品进行了组合,生产出了iPhone、iPad。所以,iPhone是“中国制造”吗?是“美国制造”吗?显然都不是。据日本媒体报道,iPhone6中,摄像头由索尼供货,液晶面板由夏普供货,高频零部件由村田制作所或TDK供货,LED背光模块由美蓓亚等日本企业供货的,只不过组装过程是由位于中国境内的富士康公司来完成的。

随着“工业4.0”时代的到来,互联网公司纷纷加入“造车”队伍,它们像Apple那样采用网络协同方式生产产品,那么丰田汽车呢?或许会成为汽车领域的富士康——为互联网公司代工。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
【观点】钢铁如何迎接工业4.0?
工业革命之争—德国工业4.0与美国CPS战略对比
图解工业4.0的核心技术
工业物联网:浅析工业4.0与智能制造的关系
信息化将如何驱动未来工业化发展?
日本学者怎么看CPS(信息物理系统)?
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服