打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
[转载]三大岩石简介4
三大岩石简介4-岩石地质分类:
<二>火成岩——概述
火成岩
X



火成岩也叫岩浆岩,顾名思义,它就是由岩浆凝固而成的岩石。它们是各种各样的结晶质或玻璃质岩石。有的火成岩在地下就凝固了,有的则是在喷出地表
面后凝固的。火成岩是组成地壳的主要岩石,许多金属和非金属矿藏的生成也都与火成岩有关系,所以人们很重视对它的研究。需要说明的是,火成岩并不完全是岩浆形成的,如有一部分花岗岩,它们是在高温度下,由其他岩石在固态下发生一些物理和化学变化而形成的。



绝大多数火成岩中只有9种元素,这9种元素又大多以氧化物(某一元素与氧元素发生化学反应后形成的新物质叫氧化物)的形式存在于岩石中,其中最多的是二氧化硅。
二氧化硅是最重要的形成岩石的材料,它与其他材料结合会形成橄榄石辉石云母长石闪石等多种造岩矿物。矿物是组成岩石的最小单位。在形成这些矿物后二氧化硅仍有多余(即过饱和)时,就会出现石英;如果二氧化硅含量不足就可能出现橄榄石或似长石类矿物(如霞石)等;当二氧化硅与其他造岩组分的含量适中,则不出现上述两类矿物,而形成辉石、角闪石和长石等矿物。这些矿物我们也可以叫它们为矿石。各种岩石其实就是由这样一些矿物组合而成的。单纯的一种矿物不能称作岩石。地下深处好像一个大熔炉,岩浆中的不同成分在那里进行一系列的变化,当它们流动到一些地方,如侵入到岩石的空隙时,便会逐渐冷却下来。这时,那些矿物们就开始出现结晶,再加上其他各种原因,如温度、压力、成分等等,有的结晶会大些,有的会小些,有的是这样几种矿物结合在一起,有的是那样几种矿物结合在一起。知道了这一点,我们就基本明白了,地球上所以会有那多种不同的岩石,其实就是在于这些元素或造岩物质的不同组合而形成的。



长石、石英、云母、角闪石、辉石和橄榄石等都叫硅酸盐矿物,它们都是形成岩石的主要物质,被称为造岩矿物。火成岩就是由它们再加上一些少量的磁铁矿、钛铁矿、锆石、磷灰石和榍石等组成。这些造岩矿物的化学成分和颜色都各不相同,人们把它们分成两类:硅铝矿物和铁镁矿物。硅铝矿物颜色浅,铁镁矿物颜色深。颜色深的岩石,比重也较大,人们往往根据火成岩的颜色来推断岩石的化学成分和它们的性质。也就是说,颜色深的比颜色浅的岩石要重一些。


火成岩的种类很多,不同学者从不同角度和标准提出许多分类方案,有的根据岩石的产状、结构和构造,有的根据矿物成分,有的根据化学成分。通行的分类有3种:按产出和形成的条件分为深成岩(就是在地面以下很深的地方形成的岩石),如花岗岩正长岩闪长岩辉长岩橄榄岩等;浅成岩(就是在地面以下较浅的地方形成的岩石),如斑岩辉绿岩煌斑岩等;喷出岩(也叫火山岩,它是从火山喷出来的岩浆凝固而成的岩石),如黑曜岩珍珠岩玄武岩等。人们根据这些岩石的结晶程度、颗粒大小、晶体形态等,以及它们之间的相互关系等来区别它们。火成岩的结构和构造还能告诉我们火成岩的形成条件。例如,花岗岩是在地下深处由岩浆缓慢结晶形成的,那些晶体的颗粒就比较粗大。而同样的这种岩浆喷出地表冷凝后形成流纹岩时,其中的矿物成分虽基本上与花岗岩相似,但矿物颗粒的特点(如晶体大小、形态等)就与花岗岩不一样了。所以结构和构造,不仅可用来鉴定岩石,作为火成岩分类的标志,而且可借以探讨岩石的形成条件。
  火成岩岩体的形态、大小与围岩(火成岩周围包裹着的其他岩石)的关系以及形成时所处的深度和构造环境等叫火成岩的产状。认识产状可以了解火成岩岩体形成的地质条件,帮助人们判断火成岩的成因,还可以了解火成岩的成矿条件和成矿关系,指导找矿勘探工作。火成岩研究不能局限于一块岩石或一个露头,不能只注意它的矿物成分和结构、构造。
  火成岩的产状多种多样。产状多样性的主要原因是岩浆的化学成分和温度、粘度等物理性质以及岩浆凝固深度等方面的差异。此外,地壳构造运动的性质、围岩的性质、地应力等对岩体的产状也有一定的影响。


  地幔,特别是上地幔是地壳物质或火成岩的原始来源。在一定的温度和压力条件下,上地幔物质中会分熔出一些玄武岩浆进入地壳,而难熔的超基性岩部分留在上地幔。由于分熔的深度的不同,分熔出不同成分或种类的玄武岩,一般认为大洋拉斑玄武岩岩浆是在小于15公里的深处从地幔分熔而成的;高铝玄武岩岩浆是在15~35公里深度分熔而成的;碱性玄武岩岩浆是在大于35公里条件下分熔而成的。


  火成岩与许多金属及非金属矿产有密切的成因联系,很多火成岩本身就是矿,如花岗岩、斜长岩、辉长岩和珍珠岩等就是很好的建筑材料,玄武岩和辉绿岩是制造铸石和岩棉的原料,纯橄榄岩是制造钙镁磷肥原料。此外,有金伯利岩中的金刚石矿床、橄榄岩和纯橄岩中的铬铁矿及铂矿、苏长岩中的铜镍硫化物矿床、辉长岩和斜长岩中的钒-钛-磁铁矿矿床以及碱性岩和碳酸岩中的轻稀土、铌、锆、钍等矿床;与中酸性岩有关的铁、铜矿床,与花岗岩类有关的钨、锡、铍、铌、钽、稀土、锂、铀、金、铅、锌和钼等矿床;与陆地火山作用有关的斑岩铜、钼、金、锡、钨、铝、锌等矿床,以及与海底火山有关的黄铁矿型铜矿和多金属矿床等。

【百度百科资料:火成岩 igneous rock
火成岩景观火成岩或称岩浆岩,是指岩冷却后(地壳里喷出的岩浆,或者被融化的现存岩石),成形的一种岩石。现在已经发现700多种岩浆岩,大部分是在地壳里面的岩石。常见的岩浆岩有花岗岩、安山岩及玄武岩等。一般来说,岩浆岩易出现于板块交界地带的火山区。

图1
  简介
火成岩(IgneousRock)由岩浆(Magma)直接凝固而成。高温之岩浆在从火成岩标本(图1)液态冷却中结品成多种矿物,矿物再紧密结合成火成岩。化学成分各异之岩浆,最後成为矿物成分各异之火成岩,种类繁多,细分之有数百种。如依其含矽量之高低做最简明之分类,火成岩有酸性(Acidic)、中性(Intermediate)、基性(Basic),及超基性(Ultrabasic)四大类。同时火成岩之晶体,因结晶时在地下之深度
不一亦有粗细之别;将此分别代表深浅之粗细做为矿物成分以外之另一分类依据。
  火成岩可分成如次之种类:晶体粗大之酸性火成岩为花冈岩(Granite),细小至肉眼不能辨识者为流纹岩(Rhyolite);晶体粗大之中性火成岩为闪长岩(Diorite)细小者为安山岩(Andesite);晶体粗大之基性火成岩为辉长岩(Gabbro),细小者为玄武岩(Basalt);晶体粗大之超基性火成岩为橄榄岩(Peridotite),此种火成岩无晶体细小者。晶体特大之火成岩统称伟晶岩(Pegmatite),但应指明其为伟晶花冈岩、伟晶闪长岩,或伟晶辉长岩。此外,不论其成分如何,岩浆在地面凝固时通常不暇结晶。此等不结晶火成岩均为火山岩,或成块状无结构之玻璃,酸性及中性者成黑耀石(Obsidian)或浮石(Pumice),基性者成玻璃质玄武岩(BasalticGlass),或在喷发时破碎成火山角砾岩(VolcanicBreccia)或凝灰岩(Tuff)。
火成岩以岩基或岩脉形体侵入较古岩层,倘再穿至地面,则成火山。
火成岩不仅为一切其他岩石之原料及多种矿产之母体,且为全球水分之来源。不论在深处或浅处,火成岩通常仅在地壳正有犟烈活动之时之地出现,并非一时处处或一处时时有为火成岩前身之岩浆活跃。岩浆在地下或喷出地表后冷凝形成的岩石。又称岩浆岩。大部分火成岩是结晶质的,小部分是玻璃质。火成岩的形成温度较高,一般介于700~1500℃之间。岩浆在地下冷凝固结形成的岩石称侵入岩;喷出地表冷凝固结形成的岩石称喷出岩。火成岩主要由硅酸盐矿物组成,在地壳中具有一定的产状、形态。许多金属矿产与非金属矿产都与火成岩有关,有时它本身就是重要的矿产资源。
  分类
岩浆岩以形成地点,纹理,化学成分和岩石形状分类。

图2
形成地点
  岩浆岩分为火山岩(外部)、浅成岩和深成岩(内部):
火成岩标本(图2)浅成岩是岩浆在地下,侵入地壳内部3-1.5千米的深度之间形成的火成岩,一般为细粒、隐晶质和斑状结构;
深成岩是岩浆侵入地壳深层3千米以下,缓慢冷却相成的火成岩,一般为全晶质粗粒结构;亦名侵入岩。
  火山岩在火山爆发岩浆喷出地面之后,再经冷却形成,所以又名喷出岩,由于冷却较快,所以一般形成细粒或玻璃质的岩石。
纹理
  岩浆岩最明显的分别是纹理,主要与组成晶子(粒子)的大小和形状相关。

图3
 
粒度
根据晶子粒的大小,岩浆岩分成五类:
火成岩标本(图3)伟晶岩质,有非常大的颗粒   
晶岩质,只有大的颗粒  
斑状,有一些大颗粒和一些小颗粒   
非显晶质,只有小颗粒
玻璃状,没有颗粒。

图4
  
晶体结构
晶体形状也是纹理的一个重要因素,以此分成三类:   
全角:晶体形状完全保存。火成岩标本(图4)
半角:晶体形状部分保存。  
他形:认不出晶体方向。。  
其中以第3项居多

图5
化学成分
  岩浆岩以两种化学成分分类:   
二氧化硅的含量:
火成岩标本(图5)酸性火成岩含量>66%
  中性火成岩含量66%~52%
  基性火成岩含量52%~45%
  超基性火成岩含量45%~40%
  石英,碱长石和似长石的含量:
  长英质:含量很高,一般颜色较浅,密度较低。
  铁镁质:含量低,颜色深,而且密度较高。
物质组成
  ①化学成分。主要由氧、硅、铝、铁、钙、钠、钾、镁、钛、锰、氢、磷
岩浆岩平均化学成分表等12种元素组成。它们被称为造岩元素,约占火成岩总重量的99%以上,尤以氧最多,占总重量的46%以上。其余所有元素的重量总和还不到1%。它们常用氧化物百分数表示(表1)。SiO2是岩浆岩中最重要的一种氧化物,其含量是岩石分类的一个主要参数。如SiO2含量大于65%的火成岩称酸性岩,含量52%~65%者为中性岩,45%~52%者为基性岩,小于45%者为超基性岩。K2O+Na2O重量百分数之和称为全碱含量,也是岩石分类的一个重要参数。除12种主要元素外,火成岩中还含有许多种微量元素,如Au、Ag、As、B、Ba、Be、Cu、Pb、Zn、F、Cl、S、Ce、Li等。

  ②矿物成分。常见的矿物有20多种,通称造岩矿物(表2)。

依其化学成分可分为两类。
火成岩某些常见岩浆岩的矿物成分成分可分为两类。
硅铝矿物,SiO2Al2O3含量高,不含FeO、MgO,如石英类、长石类和似长石类。这类矿物颜色浅,故也称浅色或淡色矿物。
铁镁矿物,FeO和MgO的含量较高,SiO2含量较低。如橄榄石类、辉石类、角闪石类及黑云母类等。这类矿物的颜色较深,故又称深色或暗色矿物。硅铝矿物和铁镁矿物在火成岩中的比例是岩石鉴定和分类的重要标志之一。火成岩的矿物成分和化学成分取决于岩浆来源,也取决于岩浆演化成岩的总过程。如来自幔源的岩浆富含铁、镁、铬等元素,形成的岩石以铁镁矿物为主,而来自壳源的岩浆富含硅铝元素,形成的岩石以硅铝矿物为主,花岗质岩浆在演化过程中与碳酸盐岩接触交代形成的矽卡岩以含钙矿物为主等。
  结构构造指组成火成岩的矿物及其集合体的形态、外貌和相互关系。它既是岩石分类命名的重要依据,也是岩石形成时的物理化学条件的反映(如岩浆性质、围岩性质、构造环境等)。借助结构构造的研究,可以帮助解决火成岩的成因、演化等问题。①常见的火成岩结构:反映火成岩结晶程度的有全晶质结构(多见于深成岩)、玻璃质结构(多见于酸性喷出岩)和半晶质结构(多见于浅成岩和超浅成岩的边缘相);反映矿物自形程度的有自形粒状结构、它形粒状结构和半自形粒状结构等;反映矿物颗粒间相互关系的有交生结构、反映边结构、环带结构、包含结构和填隙结构等。②常见的构造:反映侵入岩的构造有块状构造、带状构造、斑杂构造、晶洞构造、流动构造、原生片麻状构造等;反映喷出岩的构造有气孔状、杏仁状构造(多见于熔岩层的顶部)、枕状构造(多见于海相基性熔岩)、流纹构造(多见于酸性熔岩)、柱状节理构造(多见于厚层状基性熔岩)。

产状和相
  ①产状。指岩体的形态、大小和与围岩的关系。喷出岩的产状有熔透式(火成岩标本山喷口粗大,岩浆大面积溢出)、裂隙式(岩浆沿大的断裂裂隙喷出地表)和中心式(岩浆沿颈状管道喷出地表);侵入岩的产状有整合侵入体(如岩盆、岩盖)、不整合接触侵入体(如岩墙、岩株等)。
  ②相。指由于生成环境不同而产生的岩石部分与整个岩体间总的外貌和特征。常见的火成岩相:反映喷出岩的有溢流相、爆发相、火山颈相、次火山相、火山沉积相等;反映侵入岩的有深成相、中深成相、浅成相以及内部相、边缘相等。岩石类型根据岩石的矿物成分和化学成分,可分为超基性岩、基性岩、中性岩、酸性岩和碱性岩。
  ①超基性岩。SiO2含量小于45%,贫碱,富铁镁,长石含量少,以铁镁等暗色矿物为主,如橄榄岩,辉石岩、苦橄岩等。
  ②基性岩。SiO2含量为45%~52%,富钙、铅、镁,贫碱,主要矿物为中性斜长石和辉石,如辉长岩、辉绿岩和玄武岩等。
  ③中性岩。SiO2含量为52%~65%,主要矿物为中性斜长石和角闪石,主要类型有闪长岩、二长岩、闪长玢岩、安山岩等。
  ④酸性岩。SiO2含量大于65%,铁、镁、钙含量少,主要矿物为石英、钾长石、酸性斜长石和少量黑云母,如花岗岩、花岗闪长岩、花岗斑岩、流纹岩等。
  ⑤碱性岩。SiO2含量较低,碱质含量较高,主要矿物为碱性长石、霞石、碱性辉石和碱性闪石等,如霞石正长岩、霞石正长斑岩和粗面岩、响岩等。

火成岩地貌(图1)
岩石种类
  浆岩主要由硅酸盐矿物组成,此外,还常含微量磁铁矿等副矿物。根据岩石SiO2含量,岩浆岩可分为四大类:超基性岩:SiO2<>
火成岩地貌5%;酸性岩:SiO2>65%。岩石的碱度即指岩石中碱的饱和程度,岩石的碱度与碱含量多少有一定关系。通常把Na2O+K2O的重量百分比之和,称为全碱含量。Na2O+K2O含量越高,岩石的碱度越大。A.Rittmann1957年考虑SiO2和Na2O+K2O之间的关系,提出了确定岩石碱度比较常用的组合指数(σ)。σ值越大,岩石的碱性程度越强。每一大类岩石都可以根据碱度大小划分出钙碱性、碱性和过碱性岩三种类型。σ9时,为过碱性岩。除了岩石化学成分之外,矿物成分也是岩浆岩分类的依据之一。在岩浆岩中常见的一些矿物,它们的成分和含量由于岩石类型不同而随之发生有规律的变化。如石英、长石呈白色或肉色,被称为浅色矿物;橄榄石、辉石、角闪石和云母呈暗绿色、暗褐色,被称为暗色矿物。通常,超基性岩中没有石英,长石也很少,主要由暗色矿物组成;而酸性岩中暗色矿物很少,主要由浅色矿物组成;基性岩和中性岩的矿物组成位于两者之间,浅色矿物和暗色矿物各占有一定的比例。根据产状,也就是根据岩石侵入到地下还是喷出到地表,岩浆岩又可以分为侵入岩和喷出岩。侵入岩根据形成深度的不同,又细分为深成岩和浅成岩。每个大类的侵入岩和喷出岩在化学成分上是一致的,也就是说岩浆成分是相似的,但是由于形成环境不同,造成它们的结构和构造有明显的差别。深成岩位于地下深处,岩浆冷凝速度慢

火成岩地貌(图2)
岩石多为全晶质、矿物结晶颗粒也比较大,常常形成大的斑晶;浅成岩靠近地表,常具细粒结构和斑状结构;而喷出岩由于冷凝速度快,矿物来不及结晶,常形成隐晶质和玻璃质的岩石。根据上述原则,首先把岩浆岩按酸度分成四大类,然后再按碱度把每大类岩石分出几个岩类,它们就是构成岩浆岩大家族的主要成员。比如超基性岩大类:钙碱性系列的岩石是橄榄岩-苦橄岩类;偏碱性的岩石是含金刚石的金伯利岩;过碱性岩石为霓霞岩-霞石岩类和碳酸岩类。基性岩大类:钙碱性系列的岩石是辉长岩-玄武岩类;相应的碱性岩类是碱性辉长岩和碱性玄武岩。中性岩大类:钙碱性系列为闪长岩-安山岩类;碱性系列为正长岩-粗面岩类;过碱性岩石为霞石正长岩-响岩类。酸性岩类:主要为钙碱性系列的花岗岩-流纹岩类。
岩石成因
起源
  
根据目前研究,岩浆起源于上地幔和地壳底层,并把直接来自地幔或地壳底层的岩浆叫原始岩浆。岩浆岩种类虽然繁多,但原始岩浆的种类却极其有限,一般认为仅三、四种而已,即只有超基性(橄榄)岩浆、基性(玄武岩浆)、中性(安山)岩浆和酸性(花岗或流纹)岩浆。当然,对这个问题的认识也经过一个长期历史发展过程。在十九世纪中叶布恩森(Bonson,1851)曾提出有玄武岩浆和花岗岩浆两种原始岩浆的主张,但关于花岗岩浆的论点一直未受重视,一些学者却坚持认为只有一种玄武岩浆,而所有的岩浆岩都是由玄武岩浆派生出来的。这就是本世纪初至20年代期间风行一时的岩浆成因一元论。最早提出一元论者是戴里(Daly)和鲍文。但一元论不能解释这样一个众所周知的地质事实,即花岗岩在大陆地壳中的分布要比玄武岩广得多,例如据计算,花岗岩的分布面积比玄武岩大五倍,比其他深成岩大二十倍,并且花岗岩几乎不与玄武岩共生。进入本世纪三十年代,列文生—列森格和肯尼迪(Kenndy,1933)根据花岗岩和玄武岩同为地壳中分布最广的岩浆岩这一事实,又重新昌导花岗岩浆和玄武岩浆两种原始岩浆的论点,即所谓岩浆成因二元论。本世纪中期前后,有人针对环太平洋“安山岩线”和阿尔卑斯型超基性侵入岩这种地质事实,又提出了安山岩浆和橄榄岩浆的论点。于是进入了所谓岩浆成因的多元论阶段。目前认为种类繁多的火成岩岩浆岩就是从橄榄岩浆、玄武岩浆、安山岩浆、花岗岩浆通过复杂的演化作用形成的。这几种原始岩浆是上地幔和地壳底层的固态物质在一定条件下通过局部熔融(重熔)产生的。


局部熔融是现代岩浆成因方面的一个基本概念,大致解释如下:和单种矿物比较起来,岩石在熔化时有下列两个特点:第一,是岩石的熔化温度低于其构成矿物各自单独熔化时的熔点;第二,是岩石从开始熔化到完全熔化有一个温度区间,而矿物在一定的压力下仅有一个熔化温度。岩石熔化时之所以出现上述特点,是因为岩石是由多种矿物组成的,不同的矿物其熔点也不相同,在岩石熔化时,不同矿物的熔化顺序自然不同。一般的情况是:矿物或岩石中SiO2和K2O含量愈高,即组分愈趋向于“酸性”,愈易熔化,称为易熔组分;反之,矿物或岩石中FeO、MgO、CaO含量愈高,即组分愈趋于“基性”,愈难熔化,称为难熔组分。所以,岩石开始熔化时产生的熔体中SiO2、K2O、Na2O较多,熔体偏于酸性,随着熔化温度的提高,熔体中铁、镁组分增加而渐趋于基性。表中列出了岩屑砂岩在水压为2000巴时所做的熔化实验数据。由该表可知,熔体成分变化十分明显,在690℃至730℃之间局部熔融现象很清楚。熔体成分中SiO2含量随着温度的升高而降低,CaO、FeO、MgO组分增加。在780度时岩石大部分熔化,熔体逐渐接近于花岗闪长岩的成分,残留少量难熔基性组分。根据上述试验和地质观察,人们得出了局部熔融的概念,即在岩石开始熔化至全部熔化的温度区间内,岩石中的易熔组分(酸性组分)先熔化,产生酸性熔体,残留体为较基性的难熔固体物质。随着温度增高,熔体数量增加,其基性成分也逐渐增加;当温度达到或超过岩石全部熔化的温度时,岩石全部熔化,熔体成分和被熔化的原岩成分一致。岩石的局部熔融作用又叫重熔作用或深熔作用。岩石局部溶融基本是按石英—长石—橄榄石的顺序进行。由于地壳深部和上地幔的温度很高,固态地壳物质和上地幔物质同样也会发生局部熔融或重熔作用,一般认为上地幔物质的局部熔融产生橄榄岩浆、玄武岩浆、安山岩浆;而地壳深部(底层)岩石的局部熔融作用产生花岗岩浆。

火成岩地貌(图4)
玄武岩浆
  上地幔物质(地幔岩)局部熔融的产物。目前推断,在上地幔的不同深度上通过局部熔融产生三种岩浆,即:拉斑玄武岩浆:约小于15公里;高铝玄武岩浆:约15~35公里;碱性玄武岩浆:约35~75公里;但也有人主张只有一种玄武岩浆。从玄武岩浆中可以直接冷凝结晶成玄武岩和辉长岩。玄武岩浆通过分异作用也可生成少量的中性岩和酸性岩,但自然界少见,仅是一种实验和理论上的可能性。可是通过玄武岩浆的分异作用产生超基性岩,则有充分的实验、理论和地质根据,例如前面提到的超基性—基性层状侵入杂岩体就是最好的例证。
花岗岩浆
  是大陆地壳深部物质重熔的产物。根据理论计算,在不同深度上可能形成性质稍有差异的花岗岩浆。例如在约10公里的深度上形成活动性很弱的岩浆,许多巨型花岗岩岩基即由此种岩浆形成;大约在20公里深度上可生成活动性很强的岩浆,能够上侵至地壳浅部形成浅成侵入体,以至喷出地表形成流纹岩。花岗岩浆通过同化作用可形成中性岩和碱性岩。但是,并非所有花岗岩均来自花岗岩浆。一些花岗岩是由混合岩化作用形成的。
安山岩浆
  提出该岩浆存在的主要论点是环太平洋地区广泛地分布着安山岩。板块学说认为此种岩浆的生成模式是:当玄武岩洋壳到达海沟并向下俯冲时,玄武岩及其上覆的洋底沉积物发生局部熔融即可形成安山岩浆,其俯冲下插的深度达95公里时即可发生这一作用。
  对于大陆内部的安山岩,有人则认为是地幔或地壳深部局部熔融产生的安山岩浆活动的产物,其深度约为60公里。
橄榄岩浆
  是上地幔物质大约在80至160公里的深度上局部熔融的产物。此种岩浆形成的侵入岩多沿深大断裂或平行于褶皱带的走向分布,许多独立的超基性岩体呈串珠状分布,构成绵延数百公里的岩带。如祁连山、欧洲阿尔卑斯山的超基性岩即属此类。再次指出,关于原始岩浆及其起源问题极其复杂,许多问题并未得到圆满解决,尚待进一步研究,在这一方面深部地球物理探测是一个很重要的手段。
岩石演化
  岩浆从开始产生直到固结为岩石,始终处在不断的变化过程中;对于岩浆岩成因具有直接意义的是岩浆侵入地壳、特别是侵入地壳浅部以后到凝固为岩石这一期间内岩浆在物质成分上发生的演化。该期间内岩浆演化的基本过程是通过分异作用和同化作用,由少数几种岩浆形成多种多样的岩浆岩,并在适宜条件下形成一定的矿床。岩浆的分异和同化,是岩浆岩成因方面的基本问题,在理论上和实际上均具有很大意义。

切割抛光的断面
岩浆分异作用
  岩浆可以通过两种方式发生分异,即熔离作用和结晶分异作用,这是岩浆内部发生的一种演化。
略。。。。。。
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
经典地质图集,彻底搞明白三大岩!
常见岩浆岩标本及构成矿物详细说明
岩矿|岩浆岩标本及组成矿物
火成岩
岩石
什么是岩石?
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服