打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
深度 | 未来已来 污水处理工艺将去向何方?

好氧颗粒污泥技术的出现与发展实际上仍然是对微生物选择过程的更进一步认识,在这一认识过程伴随着对生物膜、污泥膨胀的更加深入理解。好氧颗粒污泥既可以在只去除COD的好氧环境中出现,也可以在厌氧-好氧的交替环境中去除COD及氮、磷,在这种形式的颗粒污泥中,硝化菌及普通异养菌在颗粒污泥的最外层,靠近内核部分的是反硝化菌、聚磷菌(PAOs)、聚糖菌(GAOs)。因此,好氧颗粒污泥去除营养物的机理实际上与活性污泥工艺相同,只不过并不是在不同的池子来实现,而是在颗粒污泥的不同区域来实现。

目前一般认为主要有以下几个方面对颗粒污泥的形成具有重要的影响:

饱食-饥饿选择,通常以外部基质用于生长的阶段称为饱食期,而以内部基质(PHB)生长的阶段称为饥饿期。与利用乙酸或葡萄糖等易生物降解有机物相比,异养微生物利用PHB或糖原等慢速可生物降解物质的生长速率较慢,利用这一现象可以获得稳定的颗粒污泥。生物除磷的厌氧-好氧过程是实现上述过程的良好方式,在厌氧阶段PAO或GAO将乙酸转换为PHB或糖原。因此,rbCOD有利于微生物的快速生长,进而转换为慢速可生物降解的胞内物质。这样在生物除磷工艺中就会相对更容易形成颗粒污泥。在饥饿阶段,基质通过颗粒内层的反硝化被降解到最低,或是在颗粒外层的好氧区域实现降解。

有机负荷(OLR)及基质的组成对颗粒污泥的形成很重要,采用较高的负荷选择可以使基质进入颗粒污泥的内层,这样就容易形成强健的内核。基质组成的影响主要是体现在快速可生物降解COD(rbCOD)与慢速可生物降解COD(sbCOD),在饱食期rbCOD和VFA的获得对于胞内存储物质的形成很关键,而sbCOD则会导致丝状菌在好氧阶段在竞争中获得优势。

人们在对生物膜的研究过程中,发现强的剪切力可以促使形成薄而密实的生物膜,同时伴随着剪切力相关的一个重要现象是胞外聚合物(EPS)的产生,EPS在促使细胞的“凝聚”、“粘合”方面发挥重要的功能,对于维持生物膜的整体结构方面扮演着重要的角色,在很多的研究中都可以观察到强剪切力会促使生物膜分泌更多的EPS从而维持生物膜的整体结构平衡。与生物膜类似,水力剪切力对于好氧颗粒污泥的形成也有重要的影响,强的剪切力会促使颗粒污泥的形成,而弱剪切力则不会形成颗粒污泥,只能形成蓬松的絮体结构。

同样,EPS在对颗粒污泥的形成方面也扮演着类似的角色,强剪切力会促使颗粒污泥像生物膜那样分泌出更多的EPS来产生平衡的生物结构,这也就意味着EPS对于形成稳定的颗粒污泥非常重要。

此外,通过选择性的排泥,将不易沉淀的污泥排出系统,沉降速度较快的颗粒留存于系统之内,提高颗粒污泥在其中的比例,这也是促成颗粒污泥形成的原因之一;其他形成颗粒污泥的因素还包括SRT、有机负荷、二价阳离子及三价阳离子等。

2.1.3目前的应用

目前,作为好氧颗粒污泥技术的典型代表,Nereda工艺在过去10年里得到快速的发展,截至2016年全球正在设计、建设及运行的Nereda污水处理厂有32座,这些污水处理厂分布于欧洲、美洲、澳洲、非洲等地。与相同负荷的活性污泥工艺相比,Nereda好氧颗粒污泥技术可减少占地面积25%~75%,能耗降低20%~50%。

从好氧颗粒污泥的技术发展进程来看,以Nereda为代表的好氧颗粒污泥技术实际上是一种利用内在基质选择颗粒污泥的过程,内在基质选择的一个关键因素是需要有足够高的基质浓度来形成颗粒,并促使形成较高含量的胞外聚合物(EPS)及胞内储存物,这种方式要求将沉淀较慢的絮体污泥排除系统,保留下沉淀较快的颗粒污泥,为了避免出水SS较高,可能需要有一个后置的过滤系统。Nereda这种SBR的技术形式在很大程度上限制了对现有污水处理厂的改造,因为绝大部分污水处理厂并不是SBR工艺。因此,在推流式工艺上采用外置选择器的方式在近年来得到了快速的发展,外置选择器可以是筛网或旋流器,筛网是利用颗粒的粒径来截留较大的颗粒污泥,旋流器是利用颗粒污泥密度较大的特点而在底流中获得较高比例的颗粒污泥,如图3所示。


2.1.4未来的发展

好氧颗粒污泥技术在未来可能会有以下几个发展趋势。第一,提高工艺应用的稳定性,好氧颗粒污泥技术在长期运行过程中的稳定性在某种程度上是制约这一技术应用的一个瓶颈,稳定性涉及到两个方面,一个是颗粒污泥的解体,一个是丝状菌的过度增殖,前者会导致颗粒污泥破碎为细小颗粒,后者会导致颗粒污泥蓬松,容易流失。

第二,就如同活性污泥工艺从早期的SBR向连续流工艺发展一样,当前及今后一段时间内好氧颗粒污泥的研发及应用趋势正朝着连续流工艺的方向发展,因为现在的绝大部分污水处理厂是连续流工艺,将其转为SBR的形式所需的投资费用很高,如何能够在这些连续流的污水处理厂中应用好氧颗粒污泥技术成为这一领域的发展热点。

第三,好氧颗粒污泥技术的进一步发展过程中,在机理与技术应用方面仍然有多个方面需要深入研究,这些方面主要包括理解促成颗粒污泥形成的内部基质特性、如何确保外置选择器能够实现良好的污泥沉降性能和生物除磷功能,以及如何将内在基质选择和外部选择的措施应用于工程化规模的污水处理厂。

2.2碳转向

在传统污水处理工艺中,COD的主要流向是被好氧分解,除此之外还用于脱氮除磷、厌氧消化及污泥处置。目前,污水中的碳已被广泛认为是可贵的资源,可以被用于产生能量(厌氧消化)、开发出以碳为基础的商品。因此,污水中的可生物降解有机物从二级处理转向能量回收的这一转变被称之为碳转向,碳转向是污水处理实现能量自给的必由之路,已经成为当前及今后一段时间内污水处理技术发展的一个重要方向。图4反映的是COD在新旧理念下的流向。


目前,碳转向的技术主要有化学强化一级处理(CEPT)、高负荷活性污泥工艺、厌氧处理等。CEPT对颗粒性及胶体性COD可获得40%~80%的去除率,但对溶解性COD无法去除。虽然污水的厌氧处理在热带地区有所应用,但在温带地区的主流工艺中由于其速率较低,同时产生的甲烷会有相当一部分溶解在出水中,因此尚难以得到广泛的应用。

2.2.1高负荷活性污泥工艺

高负荷活性污泥工艺(HRAS)最早由Buswell和Long在1923年开创。HRAS可以设计成满足二级处理(BOD5<30 mg/L、SS<30 mg/L)的目的,也可以设计AB工艺的A段用于碳吸附的目的。当用于二级处理时,HRAS的SRT一般1~4 d(与温度有关),HRT一般2~4 h;当用于碳吸附时工艺参数有显著的不同,通常SRT<1 d、HRT<30 min。HRAS工艺能够用较低的能耗和占地面积将进水中的颗粒性、胶体性、溶解性物质富集浓缩于剩余污泥中,通过厌氧消化或焚烧由此实现污水处理的碳转向。HRAS工艺实现碳转向的关键所在是颗粒性COD与胶体性COD的最大化去除,同时又要最低程度的矿化和慢速可生物降解COD(sCOD)的水解。在HRAS工艺中,颗粒性COD与胶体性COD是通过生物絮凝吸附于絮体之上并通过后续的固液分离得到去除,颗粒性COD与胶体性COD的吸附与胞外聚合物(EPS)的产生有密切关系,而溶解性COD的去除是胞内物质贮存的结果。

虽然ASM模型的历史已有30年之久,但主要是用于SRT>3 d的活性污泥工艺,对于HRAS工艺ASM模型难以得到理想的结果。由此,近年来有关HRAS工艺的模型得到了发展,其中之一便是双基质模型用于解释HRAS工艺的特性,双基质模型的核心之处是将溶解性可生物降解有机物(SB)进一步分为快速溶解性可生物降解有机物(SBf)和慢速溶解性可生物降解有机物(SBS),双基质模型认为SBf 与SBS同时被生物降解,微生物利用SBf的最大比生长速率较SBS的要高,进一步的试验也验证双基质模型较双阶段模型更为准确,双阶段模型认为微生物首先利用SBf,之后再利用SBS。

2.2.2HiCS工艺

在对HRAS工艺机理认识不断深入的同时,一些衍生工艺也得到了发展,并展现出更好的发展势头,其中之一便是高负荷接触稳定工艺(见图5)。传统接触稳定工艺是1922年Coombs在英国开创,一般SRT>3 d,通常目的是为了减少反应池的池容。HiCS工艺的SRT一般为0.2~3 d,是HRAS和接触稳定工艺的相互结合,生物吸附能力更强,所需的池容更小,污水的碳转向效率更高。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
塑料制品污水处理设备价格说明
给水排水 |未来污水处理工艺发展的若干方向、规律及应用(上)
连续流好氧颗粒污泥形成影响因素及应用研究进展
污泥含水率太难降?搞清楚这些,轻松降到60%以下
农村环境综合治理污水处理项目方案
俞汉青:好氧微生物颗粒技术研究与实践
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服