打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
指南速递 | 2020 ACOG实践简报:妊娠期甲状腺疾病(No.223)(上)

翻译:何丽珊 厦门理工学院

审校:郑剑兰 厦门大学附属成功医院(陆军第73集团军医院)

妊娠期甲状腺疾病

甲状腺功能亢进和甲状腺功能减退都与妊娠不良结局有关。还存在母亲临床甲状腺疾病对胎儿发育的影响。此外,影响母亲甲状腺的药物可以透过胎盘影响胎儿甲状腺。本文回顾了妊娠期甲状腺相关的病理生理变化,以及母亲临床和亚临床甲状腺疾病对母婴结局的影响。本实践公报更新了孕妇甲状腺疾病诊断和管理的相关信息,包括一种妊娠期甲状腺疾病管理的临床新路径。

背景

妊娠期甲状腺功能的变化

妊娠期甲状腺的生理变化相当大,可能会与母亲甲状腺异常混淆。妊娠晚期,母亲甲状腺体积增加10%到30%,可归因于妊娠期间细胞外液和血容量的增加[1]。此外,整个妊娠期甲状腺激素水平和甲状腺功能也有变化。表1描述了正常妊娠、以及临床和亚临床甲状腺疾病中甲状腺功能检查结果的变化。首先,母亲总甲状腺激素或结合甲状腺激素水平随血清甲状腺结合球蛋白(TBG)浓度增加而增加。其次,促甲状腺激素(也称为甲状腺刺激激素TSH)的水平在许多甲状腺疾病的筛查和诊断中起重要作用,妊娠早期TSH分泌降低是由于妊娠12周前大量人绒毛膜促性腺激素(HCG)刺激TSH受体,继而刺激甲状腺激素分泌,使血清游离甲状腺素四碘甲腺原氨酸(FT4)水平增加,抑制下丘脑促甲状腺激素释放激素(TRH),从而限制垂体分泌TSH。妊娠早期后,TSH回到基线水平,妊娠晚期逐渐上升,这与胎盘生长和胎盘脱碘酶的产生有关[2]。在解读妊娠期甲状腺功能检查结果(表1)时,应考虑这些生理变化。

缩写:T4,四碘甲状腺素;TSH,促甲状腺激素。

妊娠期甲状腺功能检查

理想情况下,妊娠期甲状腺功能的参考值是根据本地无甲状腺疾病的孕妇人群水平确定的。美国甲状腺协会建议,当地没有参考值时,妊娠早期末期的TSH参考值下限可降低0.4mU/L,参考值上限可降低0.5mU/L[3]。妊娠早期以后,TSH逐渐向非妊娠期的参考值[3]接近,可以使用非妊娠期的参考值。总甲状腺激素T4(TT4)和总甲状腺激素T3(TT3)的参考值也应根据妊娠情况进行调整。妊娠16周后,TT4和TT3的参考值上限可增加约50%[3,4]。妊娠16周前,与未妊娠的成年人相比,TT4和TT3逐渐增加。TT4和TT3参考值的调整对于解释妊娠期甲状腺结合球蛋白(TBG)的增加是必要的[3]

胎儿甲状腺功能

胎儿甲状腺在妊娠12周左右开始摄碘并合成甲状腺激素[5,6]。也就是说,母亲的T4在整个妊娠期都会转移到胎儿,对胎儿大脑的正常发育至关重要,尤其是在胎儿甲状腺开始起作用前[7]。分娩时脐带血清中的T4约30%来源于母亲[8]。应将母亲甲状腺疾病史,特别是妊娠期服用过的丙基硫氧嘧啶( PTU) 和甲巯咪唑 ( MMI),或已知母亲甲状腺受体抗体病史均告知出生后将照顾婴儿的新生儿科医生或儿科医生,因为这些药物和抗体会影响新生儿甲状腺功能。

甲状腺功能亢进症

临床甲亢的特征是TSH水平降低和FT4水平升高(表1)。0.2-0.7%的孕妇存在甲亢,其中约95%为毒性弥漫性甲状腺肿( Graves病)[9,10]。甲亢的症状体征包括紧张,震颤,心动过速,大便频繁,出汗过多,不耐热,体重减轻,甲状腺肿,失眠,心悸和高血压。Graves病的显着特征是眼病(体征包括眼裂增宽、眼睑活动滞缓和眼睑挛缩)和皮肤病(体征包括局部或胫前粘液性水肿)。尽管甲亢的一些症状与正常妊娠或某些非甲状腺相关疾病的症状相似,但血清甲状腺功能检测结果可将甲状腺疾病与其他情况区分开。治疗不当的甲状腺毒症孕产妇比已治疗或控制好的甲状腺毒症孕产妇导致重度子痫前期、母亲心力衰竭和甲状腺危象等的风险更高[11-14]

胎儿和新生儿的影响

妊娠结局通常取决于在妊娠前和妊娠期间是否实现代谢控制[15]。治疗不当的甲亢与医学指征早产,低出生体重,流产和死胎死产的增加有关[11,12,16,17]。Graves病相关的胎儿和新生儿风险不仅与疾病本身,还与硫酰胺类药物(PTU或MMI)的治疗有关。由于母亲抗体的持续存在,所有Graves病史的孕妇都应考虑胎儿甲状腺毒症的可能性[9]。胎儿甲状腺毒症通常表现为胎儿心动过速和胎儿生长发育不良。若怀疑胎儿甲状腺毒症,应咨询具有此类疾病专业知识的临床医生。

由于女性很大一部分甲状腺疾病是由通过胎盘的抗体介导的,因此担心新生儿患免疫介导的甲减或甲亢的风险。Graves病的孕妇可有甲状腺刺激免疫球蛋白(TGI)和TSH结合抑制性免疫球蛋白(也称为促甲状腺激素结合抑制性免疫球蛋白TBI-I),分别能刺激或抑制胎儿甲状腺。在某些情况下,Graves病的母亲TBI-I可能导致新生儿出现短暂性甲减[18,19]。此外,这些新生儿中有1-5%的甲亢或新生儿Graves病是由母亲的TGI透过胎盘传递引起的[20,21]。在新生儿中的母亲抗体清除速度不如硫代酰胺类药物的快,这有时会导致新生儿Graves病的延迟出现[21]。因此,分娩时应告知儿科医生母亲Graves病的信息,并跟踪新生儿是否存在Graves病的潜在发展[21]。新生儿Graves病的发病率与当时母亲的甲状腺功能无关。妊娠前接受过手术治疗或放射性碘-131治疗、且不需要硫代酰胺治疗的Graves病女性,其新生儿仍可能具有循环抗体,仍有新生儿Graves病的风险,应进行相应的监测[3]

亚临床甲状腺功能亢进症

亚临床甲亢约占孕妇的0.8-1.7%[22,23],其特征是血清TSH浓度低于正常下限,FT4水平在正常参考值范围内[24](表1)。重要的是,它与不良妊娠结局无明显关系[22,25,26]。不建议对亚临床甲亢孕妇进行治疗,因为对母胎没有明显的益处。此外,理论上还对胎儿有风险,因为抗甲状腺药物通过胎盘,可能对胎儿甲状腺功能产生不良影响。

甲状腺功能减退症

每1000例妊娠中有2-10例并发临床甲减[10]。甲减是根据实验室结果诊断的,TSH高于参考值上限,FT4低于参考值下限(表1)。甲减可伴有非特异性的临床发现,可能与妊娠常见的症状体征没有区别,如疲劳,便秘,不耐寒,肌肉痉挛和体重增加。其他临床表现包括水肿,皮肤干燥,脱发和深层肌腱反射的弛缓时间延长。甲状腺肿可能存在也可能不存在,并且更可能发生在患有桥本甲状腺炎(也称为桥本病)或生活在地方性碘缺乏地区的女性。桥本甲状腺炎是妊娠期甲减的最常见原因,其特征是自身抗体,特别是抗甲状腺过氧化物酶抗体(TPOAb)破坏腺体。

母亲摄入足量碘是孕妇及胎儿合成T4所必需。生活在美国的大多数女性碘的摄入量充足[3]。但其他低碘地区的育龄妇女面临更高的风险。推荐孕妇日常饮食的每日膳食碘摄入量为220μg,哺乳期女性为290μg[27]。妊娠期常规补碘,特别是生活在碘轻度缺乏地区的女性,其益处尚无明确证据[28,29]。应注意的是,补充多种维生素中(包括产前维生素)并不总是含碘。此外,市场上并非所有盐都加碘。

围产期不良结局,如自然流产,子痫前期,早产,胎盘早剥和死胎与未治疗的临床甲减有关[30,31]。对妊娠期临床甲减患者进行适当的甲状腺激素替代治疗可将不良结局的风险降至最低[32,33

胎儿和新生儿的影响

明显的,未经治疗的母亲甲减与低出生体重以及后代神经智力发育受损的风险增加有关[25,31]。然而,母亲甲状腺抑制性抗体(TFIAb)很少透过胎盘并引起胎儿甲减。桥本甲状腺炎女性的后代中,胎儿甲减的患病率仅约占新生儿的18万之1[34]

亚临床甲状腺功能减退症

亚临床甲减定义为FT4水平正常时血清TSH水平升高[24](表1)。妊娠期亚临床甲减的患病率约为2-5%[10, 35-37]。在其他情况健康的女性中,亚临床甲减在妊娠期发展为临床甲减的可能性不大。

未诊断的母亲甲减可能与后代神经发育受损有关[38,39],这两项观察研究激起提高了对妊娠期亚临床甲减的兴趣。然而,2012年发表的一项大型随机对照试验,即控制性产前甲状腺筛查(称为CATS)试验, 2017年发表在母胎医学网的甲状腺素治疗亚临床甲减或甲状腺素血症的随机试验显示,在接受亚临床甲减筛查和治疗的女性后代直到5岁的神经认知发育没有差异[40,41]。此外,CATS研究随访到9岁儿童证实,接受治疗女性的后代神经发育没有改善[42]。在一些研究中,已证明母亲的亚临床甲减与早产,胎盘早剥,新生儿入住重症监护室,严重子痫前期和妊娠期糖尿病的发病率高相关[25,26,35,43]。然而,其他研究尚未确定母亲亚临床甲减与这些产科不良结局之间的联系[17,36,44]。目前,没有证据表明妊娠期亚临床甲减的识别和治疗可改善这些结局[40-42,45]

临床考虑和建议

哪些孕妇应该接受甲状腺疾病筛查

不建议对妊娠期甲状腺疾病进行普遍筛查,因为尚未证明母亲亚临床甲减的识别和治疗可改善妊娠结局和后代神经认知功能。对于有甲状腺疾病,I型糖尿病、临床怀疑甲状腺疾病、及有家族史的女性应进行甲状腺功能检测。在甲状腺轻度肿大的无症状孕妇中进行甲状腺功能研究是没必要的,因为妊娠期甲状腺肿大高达30%[46]。对于甲状腺明显肿大或甲状腺结节的孕妇,甲状腺功能研究是合适的,因为这些体格检查结果被认为是超出正常妊娠的可接受范围。

CATS研究和2017年母胎医学网对甲状腺素治疗妊娠期亚临床甲减或甲状腺素血症的随机试验结果表明,筛查和治疗妊娠期亚临床甲减的女性,并不能改善她们后代分别在3岁和5岁时的认知功能[40,41]。因此,美国妇产科学院,内分泌学会和美国临床内分泌学家协会建议不要在妊娠期对甲状腺疾病进行普遍筛查,并建议仅对有临床甲减风险的女性进行妊娠期检测[47,48]。美国甲状腺协会发现,目前没有足够的数据支持或反对普遍的甲状腺筛查[3]

妊娠期间使用哪些实验室检查来诊断甲状腺疾病?

TSH和甲状腺激素水平都用于诊断妊娠期甲状腺疾病(图1)。如果有必要,评估甲状腺状态的一线筛查试验应是检测TSH水平。假设下丘脑-垂体功能正常,则血清TSH与血清甲状腺激素之间存在逆对数线性关系,因此循环激素水平的微小变化将导致TSH发生较大变化。此外,由于大多数临床实验室使用游离激素测定法而不是物理分离技术,如平衡透析,因此检测结果取决于单独的结合蛋白水平,仅代表实际循环FT4浓度的估计值。因此,TSH是甲状腺状态最可靠的指标,因为它间接反映了垂体所感知的甲状腺激素水平。当TSH水平异常高或低时,应后续研究检测FT4水平,以确定是否存在临床甲状腺功能障碍。在疑似甲亢的病例中,还应检测TT3(图1)。TT3比FT3优先考虑,因为用于FT3的检测方法不如FT4的方法可靠[4]。应检测接受甲亢治疗孕妇的FT4水平,并相应调整抗甲状腺药物(硫代酰胺)的剂量,使FT4达到正常妊娠参考值的上限。在患有T3甲状腺毒症的女性中,应检测TT3,使目标水平在正常妊娠参考值的上限

应用什么药物治疗妊娠期临床甲亢,妊娠期间应如何管理和调整这些药物?

临床甲亢孕妇应接受抗甲状腺药物(硫代酰胺类)治疗。PTU或MMI均为硫代酰胺类药物,可用于治疗临床甲亢孕妇。药物的选择取决于妊娠时期,对以前治疗的反应,以及甲状腺毒症主要是T4或T3。应通过共同决策制定适当的治疗计划,向女性提供有关这两种硫代酰胺类药物的风险和益处的咨询。MMI在妊娠早期通常避免服用,因为它与一种罕见的胚胎病有关,其特征是食道或鼻后孔闭锁以及一种先天性的皮肤发育不全[49]。2012年回顾分析5967例分娩的Graves病女性,服用MMI的患者比服用PTU 的患者发生胎儿重大畸形的风险增加了2倍[49]。具体是指9例服用MMI的婴儿中,有7例皮肤发育不全,1例食管闭锁。因此,PTU通常用于控制妊娠早期的甲亢服。

妊娠早期以后,MMI或PTU均可用于治疗甲亢。极少数情况下,PTU会导致临床上严重肝毒性[4],这促使一些医疗保健专业人员在妊娠早期以后改用MMI。然而,将PTU改为MMI可能导致甲亢控制不佳。两种药物都有已知的副作用,必须相互权衡并与患者讨论[4]。因此,一些女性在整个妊娠期都用PTU治疗。此外,PTU可减少T4至T3的转化率,应优先用于T3为主的甲状腺毒症[4]。通常应与内分泌学或母胎医学专科医生一起决策是否以及如何将一种药物换为另一种药物。如果合适,建议PTU与MMI的剂量比为20:1 (图1)。

服用硫代酰胺类药物的孕妇中,高达10%会发生短暂性白细胞减少症,但这种情况不需要停止治疗。然而,其中不到1%的患者会突然出现粒细胞缺乏症,并要求停药。粒细胞缺乏症的发生与剂量无关,并且由于其急性发作,治疗期间连续检测白细胞计数是无济于事的。因此,如果出现发烧或喉咙痛,应命令患者立即停止服用该药物并报告全血细胞计数[50]

最初的硫代酰胺剂量是经验性的。如果选择PTU,则可根据临床严重程度,100–600mg开始,每日分三次口服[3]。一般患者的标准剂量是每天200-400mg。如果服用MMI,建议初始剂量为5–30 mg,每日分二次口服(虽然随着维持治疗的建立,频率可能会减少至每日一次)。目的是用尽可能小的硫代酰胺剂量进行治疗,以维持FT4水平轻度升高或在参考值的高线水平,不用考虑TSH的水平如何[3]。对于以T3为主的甲状腺毒症女性,应检测TT3。

Β肾上腺受体阻滞剂可用于症状性心悸的辅助治疗。妊娠期首选普萘洛尔,起始剂量为10–40 mg,每天服用3至4次[4]


图1.妊娠期甲状腺疾病管理的临床路径。缩写:T3,三碘甲状腺原氨酸;T4,甲状腺素;TRAb,甲状腺受体抗体;TSH,促甲状腺激素;TSI,促甲状腺免疫球蛋白。* PTU 应在妊娠早期服用,因为MMI与出生缺陷有关。对于症状性心悸或其他甲亢高代谢症状的女性,可用普萘洛尔,以10-40mg的剂量开始,每6-8小时一次。妊娠期TT3参考值范围是未妊娠期的1.5倍。

专家简介

郑剑兰,主任医师,教授,研究生导师

厦门大学附属成功医院、陆军第73集团军医院暨全军计划生育优生优育技术指导中心妇儿科主任,全军妇产科专业委员及产科学组秘书长,南京军区妇产科副主任委员,英国帝国理工大学母婴研究中心签约学者,全球健康中心及美国辛辛那提大学交流学者,中华医学会围产医学分会委员,中国医师协会母胎医学分会委员,中国对外交流促进会妇产科分会委员,中国妇幼保健协会高危妊娠常务委员,中国研究型医院学会孕产期母儿心脏病专业委员会常务委员,福建省围产医学分会委员、优生优育及妇幼保健协会盆底委员会常务委员、骨质疏松及骨矿盐学会委员,厦门市围产医学分会候任主任委员、妇产科副主任委员、产科质控中心副主任,SCI期刊《ANZJOG》 及《JOGR》审稿专家。

妇产科临床工作30多年,擅长妇科腔镜及产科危急重症抢救,近年来主要从事围产医学研究。主编专著2部;发表SCI及国内核心期刊论著20余篇;主持国家自然科学基金面上项目,省市及军队科研项目10项;引进Bakri产后止血球囊和CRB促宫颈成熟及引产球囊;发明Zheng子宫压迫缝合术,第一完成人获国家专利3项,并获军队和福建省、厦门市医疗成果及科技进步奖9项,享受军队一类科技人才岗位津贴,是军队334工程拔尖人才和厦门大学科技创新人才,多次荣立军队二等功及三等功。

参考文献:

1. Vannucchi G, Covelli D, Vigo B, Perrino M, Mondina L, Fugazzola L. Thyroid volume and serum calcitonin changes during pregnancy. J Endocrinol Invest 2017;40: 727–32. (Level II-3)

2. Huang SA. Physiology and pathophysiology of type 3 deiodinase in humans. Thyroid 2005;15:875–81. (Level III)

3. Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, et al. 2017 guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum [published erratum appears in Thyroid 2017;27:1212]. Thyroid 2017;27:315–89. (Level III)

4. Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, et al. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis [published erratum appears in Thyroid 2017;27:1462]. Thyroid 2016;26:1343– 421. (Level III)

5. Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 2007;3: 249–59. (Level III)

6. Calvo RM, Jauniaux E, Gulbis B, Asunción M, Gervy C, Contempré B, et al. Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. J Clin Endocrinol Metab 2002; 87:1768–77. (Level III)

7. Korevaar TI, Muetzel R, Medici M, Chaker L, Jaddoe VW, de Rijke YB, et al. Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study. Lancet Diabetes Endocrinol 2016;4:35–43. (Level II-2)

8. Thorpe-Beeston J, Nicolaides KH, Snijders RJ, Felton CV, McGregor AM. Thyroid function in small for gestational age fetuses. Obstet Gynecol 1991;77:701–6. (Level II-3)

9. Ecker JL, Musci TJ. Thyroid function and disease in pregnancy. Curr Probl Obstet Gynecol Fertil 2000;23:109–22. (Level III)

10. Dong AC, Stagnaro-Green A. Differences in diagnostic criteria mask the true prevalence of thyroid disease in pregnancy: a systematic review and meta-analysis. Thyroid 2019;29:278–89. (Systematic Review and Meta-Analysis)

11. Davis LE, Lucas MJ, Hankins GD, Roark ML, Cunningham FG. Thyrotoxicosis complicating pregnancy. Obstet Gynecol 1989;160:63–70. (Level III)

12. Millar LK, Wing DA, Leung AS, Koonings PP, Montoro MN, Mestman JH. Low birth weight and preeclampsia in pregnancies complicated by hyperthyroidism. Obstet Gynecol 1994;84:946–9. (Level II-2)

13. Krassas GE, Poppe K, Glinoer D. Thyroid function and human reproductive health. Endocr Rev 2010;31:702–55. (Level III)

14. Pearce EN. Management of thyrotoxicosis: preconception, pregnancy, and the postpartum period. Endocr Pract 2019; 25:62–8. (Level III)

15. Uenaka M, Tanimura K, Tairaku S, Morioka I, Ebina Y, Yamada H. Risk factors for neonatal thyroid dysfunction in pregnancies complicated by Graves’ disease. Eur J Obstet Gynecol Reprod Biol 2014;177:89–93. (Level III)

16. Aggarawal N, Suri V, Singla R, Chopra S, Sikka P, Shah VN, et al. Pregnancy outcome in hyperthyroidism: a case control study. Gynecol Obstet Invest 2014;77:94–9. (Level II-2)

17. Sheehan PM, Nankervis A, Araujo Júnior E, Da SC. Maternal thyroid disease and preterm birth: systematic review and meta-analysis. J Clin Endocrinol Metab 2015;100: 4325–31. (Systematic Review and Meta-Analysis)

18. Matsuura N, Harada S, Ohyama Y, Shibayama K, Fukushi M, Ishikawa N, et al. The mechanisms of transient hypothyroxinemia in infants born to mothers with Graves’ disease. Pediatr Res 1997;42:214–8. (Level III)

19. McKenzie JM, Zakarija M. Fetal and neonatal hyperthyroidism and hypothyroidism due to maternal TSH receptor antibodies. Thyroid 1992;2:155–9. (Level III)

20. Weetman AP. Graves’ disease. N Engl J Med 2000;343: 1236–48. (Level III)

21. van der Kaay DC, Wasserman JD, Palmert MR. Management of neonates born to mothers with Graves’ disease. Pediatrics 2016;137:e20151878. (Level III)

 22. Casey BM, Dashe JS, Wells CE, McIntire DD, Leveno KJ, Cunningham FG. Subclinical hyperthyroidism and pregnancy outcomes. Obstet Gynecol 2006;107:337–41. (Level II-2)

23. Diéguez M, Herrero A, Avello N, Suárez P, Delgado E, Menéndez E. Prevalence of thyroid dysfunction in women in early pregnancy: does it increase with maternal age? Clin Endocrinol (Oxf) 2016;84:121–6. (Level II-3)

 24. Surks MI, Ortiz E, Daniels GH, Sawin CT, Col NF, Cobin RH, et al. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA 2004; 291:228–38. (Level III)

25. Tudela CM, Casey BM, McIntire DD, Cunningham FG. Relationship of subclinical thyroid disease to the incidence of gestational diabetes. Obstet Gynecol 2012;119:983–8. (Level II-3)

26. Wilson KL, Casey BM, McIntire DD, Halvorson LM, Cunningham FG. Subclinical thyroid disease and the incidence of hypertension in pregnancy. Obstet Gynecol 2012;119: 315–20. (Level II-3)

27. Institute of Medicine. Dietary reference intakes: the essential guide to nutrient requirements. Washington, DC: National Academies Press; 2006. Available at: https:// www.nap.edu/catalog/11537/dietary-reference-intakes-theessential-guide-to-nutrient-requirements. Retrieved January 10, 2020. (Level III)

28. Harding KB, Peña‐Rosas JP, Webster AC, Yap CM, Payne BA, Ota E, et al. Iodine supplementation for women during the preconception, pregnancy and postpartum period. Cochrane Database of Systematic Reviews 2017, Issue 3. Art. No.: CD011761. DOI: 10.1002/14651858.CD011761. pub2. (Systematic Review and Meta-Analysis)

 29. Pearce EN, Lazarus JH, Moreno-Reyes R, Zimmermann MB. Consequences of iodine deficiency and excess in pregnant women: an overview of current knowns and unknowns. Am J Clin Nutr 2016;104(suppl 3):918S–23S. (Level III)

30. Casey BM, Leveno KJ. Thyroid disease in pregnancy. Obstet Gynecol 2006;108:1283–92. (Level III)

31. Yazbeck CF, Sullivan SD. Thyroid disorders during pregnancy. Med Clin North Am 2012;96:235–56. (Level III)

32. Abalovich M, Gutierrez S, Alcaraz G, Maccallini G, Garcia A, Levalle O. Overt and subclinical hypothyroidism complicating pregnancy. Thyroid 2002;12:63–8. (Level III) 

33. Bryant SN, Nelson DB, McIntire DD, Casey BM, Cunningham FG. An analysis of population-based prenatal screening for overt hypothyroidism. Obstet Gynecol 2015;213:565.e1–6. (Level II-2)

34. Brown RS, Bellisario RL, Botero D, Fournier L, Abrams CA, Cowger ML, et al. Incidence of transient congenital hypothyroidism due to maternal thyrotropin receptorblocking antibodies in over one million babies. J Clin Endocrinol Metab 1996;81:1147–51. (Level II-3)

35. Casey BM, Dashe JS, Wells CE, McIntire DD, Byrd W, Leveno KJ, et al. Subclinical hypothyroidism and pregnancy outcomes. Obstet Gynecol 2005;105:239–45. (Level II-2)

36. Cleary-Goldman J, Malone FD, Lambert-Messerlian G, Sullivan L, Canick J, Porter TF, et al. Maternal thyroid hypofunction and pregnancy outcome. Obstet Gynecol 2008;112:85–92. (Level II-3)

 37. Fitzpatrick DL, Russell MA. Diagnosis and management of thyroid disease in pregnancy. Obstet Gynecol Clin North Am 2010;37:173–93. (Level III)

38. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 1999;341:549–55. (Level II-2)

39. Pop VJ, Kuijpens JL, van Baar AL, Verkerk G, van Son MM, de Vijlder JJ, et al. Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin Endocrinol (Oxf) 1999;50:149–55. (Level II-3)

 40. Lazarus JH, Bestwick JP, Channon S, Paradice R, Maina A, Rees R, et al. Antenatal thyroid screening and childhood cognitive function [published erratum appears in N Engl J Med 2012;366:1650]. N Engl J Med 2012;366:493–501. (Level I)

41. Casey BM, Thom EA, Peaceman AM, Varner MW, Sorokin Y, Hirtz DG, et al. Treatment of subclinical hypothyroidism or hypothyroxinemia in pregnancy. Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal–Fetal Medicine Units Network. N Engl J Med 2017;376:815–25. (Level I)

42. Hales C, Taylor PN, Channon S, Paradice R, McEwan K, Zhang L, et al. Controlled antenatal thyroid screening II: effect of treating maternal suboptimal thyroid function on child cognition. J Clin Endocrinol Metab 2018;103:1583– 91. (Level II-2)

43. Korevaar TI, Derakhshan A, Taylor PN, Meima M, Chen L, Bliddal S, et al. Association of thyroid function test abnormalities and thyroid autoimmunity with preterm birth: a systematic review and meta-analysis. Consortium on Thyroid and Pregnancy—Study Group on Preterm Birth [published erratum appears in JAMA 2019;322:1718]. JAMA 2019;322:632–41. (Systematic Review and MetaAnalysis)

44. Casey BM, Dashe JS, Spong CY, McIntire DD, Leveno KJ, Cunningham GF. Perinatal significance of isolated maternal hypothyroxinemia identified in the first half of pregnancy. Obstet Gynecol 2007;109:1129–35. (Level II3)

45. Cappola AR, Casey BM. Thyroid function test abnormalities during pregnancy. JAMA 2019;322:617–9. (Level III)

 46. Fister P, Gaberscek S, Zaletel K, Krhin B, Gersak K, Hojker S. Thyroid volume changes during pregnancy and after delivery in an iodine-sufficient Republic of Slovenia. Eur J Obstet Gynecol Reprod Biol 2009;145:45–8. (Level III)

47. De Groot L, Abalovich M, Alexander EK, Amino N, Barbour L, Cobin RH, et al. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2012;97:2543–65. (Level III)

48. Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. American Association of Clinical Endocrinologists and American Thyroid Association Taskforce on Hypothyroidism in Adults [published errata appear in Thyroid 2013;23:251; Thyroid 2013;23:129]. Thyroid 2012;22:1200–35. (Level III)

49. Yoshihara A, Noh J, Yamaguchi T, Ohye H, Sato S, Sekiya K, et al. Treatment of Graves’ disease with antithyroid drugs in the first trimester of pregnancy and the prevalence of congenital malformation. J Clin Endocrinol Metab 2012; 97:2396–403. (Level II-3)

50. Brent GA. Clinical practice. Graves’ disease. N Engl J Med 2008;358:2594–605. (Level III)

51. Abalovich M, Alcaraz G, Kleiman-Rubinsztein J, Pavlove MM, Cornelio C, Levalle O, et al. The relationship of preconception thyrotropin levels to requirements for increasing the levothyroxine dose during pregnancy in women with primary hypothyroidism. Thyroid 2010;20:1175–8. (Level III)

52. Alexander EK, Marqusee E, Lawrence J, Jarolim P, Fischer GA, Larsen PR. Timing and magnitude of increases in levothyroxine requirements during pregnancy in women with hypothyroidism. N Engl J Med 2004;351:241–9. (Level III)

53. Arafah BM. Increased need for thyroxine in women with hypothyroidism during estrogen therapy. N Engl J Med 2001;344:1743–9. (Level II-3)

54. Thangaratinam S, Tan A, Knox E, Kilby MD, Franklyn J, Coomarasamy A. Association between thyroid autoantibodies and miscarriage and preterm birth: meta-analysis of evidence. BMJ 2011;342:d2616. (Systematic Review and Meta-Analysis)

55. Stagnaro-Green A, Pearce E. Thyroid disorders in pregnancy. Nat Rev Endocrinol 2012;8:650–8. (Level III)

 56. Wang H, Gao H, Chi H, Zeng L, Xiao W, Wang Y, et al. Effect of levothyroxine on miscarriage among women with normal thyroid function and thyroid autoimmunity undergoing in vitro fertilization and embryo transfer: a randomized clinical trial. JAMA 2017;318:2190–8. (Level I)

57. Dhillon-Smith R, Middleton LJ, Sunner KK, Cheed V, Baker K, Farrell-Carver S, et al. Levothyroxine in women with thyroid peroxidase antibodies before conception. N Engl J Med 2019;380:1316–25. (Level I) 58. Yeo CP, Khoo DH, Eng PH, Tan HK, Yo SL, Jacob E. Prevalence of gestational thyrotoxicosis in Asian women evaluated in the 8th to 14th weeks of pregnancy: correlations with total and free beta human chorionic gonadotrophin. Clin Endocrinol (Oxf) 2001;55:391–8. (Level II-3)

59. Kinomoto-Kondo S, Umehara N, Sato S, Ogawa K, Fujiwara T, Arata N, et al. The effects of gestational transient thyrotoxicosis on the perinatal outcomes: a case–control study. Arch Gynecol Obstet 2017;295:87–93. (Level II-2)

60. Niemeijer MN, Grooten IJ, Vos N, Bais JM, van der Post JA, Mol BW, et al. Diagnostic markers for hyperemesis gravidarum: a systematic review and metaanalysis. Obstet Gynecol 2014;211:150.e1–15. (Systematic Review and Meta-Analysis)

61. Sheffield JS, Cunningham FG. Thyrotoxicosis and heart failure that complicate pregnancy. Obstet Gynecol 2004; 190:211–7. (Level III)

62. Siu C, Zhang X, Yung C, Kung AW, Lau C, Tse H. Hemodynamic changes in hyperthyroidism-related pulmonary hypertension: a prospective echocardiographic study. J Clin Endocrinol Metab 2007;92:1736–42. (Level II-3)

63. Vydt T, Verhelst J, De Keulenaer G. Cardiomyopathy and thyrotoxicosis: tachycardiomyopathy or thyrotoxic cardiomyopathy? Acta Cardiol 2006;61:115–7. (Level III)

64. Brand F, Liégeois P, Langer B. One case of fetal and neonatal variable thyroid dysfunction in the context of Graves’ disease. Fetal Diagn Ther 2005;20:12–5. (Level III)

65. Cohen O, Pinhas-Hamiel O, Sivan E, Dolitski M, Lipitz S, Achiron R. Serial in utero ultrasonographic measurements of the fetal thyroid: a new complementary tool in the management of maternal hyperthyroidism in pregnancy. Prenat Diagn 2003;23:740–2. (Level III)

 66. Luton D, Le Gac I, Vuillard E, Castanet M, Guibourdenche J, Noel M, et al. Management of Graves’ disease during pregnancy: the key role of fetal thyroid gland monitoring. J Clin Endocrinol Metab 2005;90:6093–8. (Level III)

67. Hegedüs L. Clinical practice. The thyroid nodule. N Engl J Med 2004;351:1764–71. (Level III)

68. Kwong N, Medici M, Angell TE, Liu X, Marqusee E, Cibas ES, et al. The influence of patient age on thyroid nodule formation, multinodularity, and thyroid cancer risk. J Clin Endocrinol Metab 2015;100:4434–40. (Level II-2)

69. Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, Hegedüs L, et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules —2016 update. Endocr Pract 2016;22:622–39. (Level III)

70. Bartolazzi A, Gasbarri A, Papotti M, Bussolati G, Lucante T, Khan A, et al. Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. Thyroid Cancer Study Group. Lancet 2001;357:1644–50. (Level II-3)

71. Nathan N, Sullivan SD. Thyroid disorders during pregnancy. Endocrinol Metab Clin North Am 2014;43:573– 97. (Level III)

72. Stagnaro-Green A, Glinoer D. Thyroid autoimmunity and the risk of miscarriage. Best Pract Res Clin Endocrinol Metab 2004;18:167–81. (Level III)

73. Muller AF, Drexhage HA, Berghout A. Postpartum thyroiditis and autoimmune thyroiditis in women of childbearing age: recent insights and consequences for antenatal and postnatal care. Endocr Rev 2001;22:605– 30. (Level II-3)

74. Bergink V, Pop VJ, Nielsen PR, Agerbo E, Munk-Olsen T, Liu X. Comorbidity of autoimmune thyroid disorders and psychiatric disorders during the postpartum period: a Danish nationwide register-based cohort study. Psychol Med 2018;48:1291–8. (Level II-2)

75. Cunningham FG, Leveno KJ, Bloom SL, Dashe JS, Hoffman BL, Casey BM, et al, editors. Williams obstetrics. 25th ed. New York, NY: McGraw-Hill Education; 2018. (Level III) 

76. Lucas A, Pizarro E, Granada ML, Salinas I, Roca J, Sanmartí A. Postpartum thyroiditis: long-term follow-up. Thyroid 2005;15:1177–81. (Level III)

77. Premawardhana LD, Parkes AB, Ammari F, John R, Darke C, Adams H, et al. Postpartum thyroiditis and long-term thyroid status: prognostic influence of thyroid peroxidase antibodies and ultrasound echogenicity. J Clin Endocrinol Metab 2000;85:71–5. (Level II-3)

责任编辑:扶摇直上

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
2022国际甲状腺知识宣传周丨妊娠期甲状腺功能亢进症的诊疗进展
指南与共识|分化型甲状腺癌术后管理中国专家共识(2020版)
妊娠期甲状腺功能减退症,如何使用左甲状腺素治疗?
注意陷阱!甲状腺功能测定中的诊断局限性。
亚临床甲状腺功能减退症与心血管疾病的相关性研究进展
不容忽视的妊娠期甲状腺功能筛查
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服