打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
高中数学:圆锥曲线的光学性质及其应用

一、圆锥曲线的光学性质

圆锥曲线的光学性质源于它的切线和法线的性质,因而为正确理解与掌握其光学性质,就要掌握其切线、法线方程的求法及性质。

P

)为圆锥曲线
ABC不同时为零)上一定点,则在该点处的切线方程为:
 
。(该方程与已知曲线方程本身相比,得到的规律就是通常所说的“替换法则”,可直接用此法则写出切线方程)。

该方程的推导,原则上用“△法”求出在点P处的切线斜率

,进而用点斜式写出切线方程
,则在点P处的法线方程为
 


1、抛物线的切线、法线性质

经过抛物线

上一点作一条直线平行于抛物线的轴,那么经过这一点的法线平分这条直线和这一点的焦半径的夹角。如图1

事实上,设

为抛物线
上一点,则切线MT的方程可由替换法则,得
,即
,斜率为
,于是得在点M处的法线方程为

,得法线与x轴的交点N的坐标为

所以

又焦半径

所以

,从而得

当点M与顶点O重合时,法线为x轴,结论仍成立。

所以过M的法线平分这条直线和这一点的焦半径的夹角。

也可以利用点M处的切线方程求出

,则
,又
,从而得

也可以利用到角公式来证明

抛物线的这个性质的光学意义是:“从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴”。


2、椭圆的切线、法线性质

经过椭圆上一点的法线,平分这一点的两条焦点半径的夹角。如图2

证明也不难,分别求出

,然后用到角公式即可获证。

椭圆的这个性质的光学意义是:“从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上”。


3、双曲线的切线、法线性质

经过双曲线上一点的切线,平分这一点的两条焦点半径的夹角,如图3

。仍可利用到角公式获证。

这个性质的光学意义是:“从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是散开的,它们就好像是从另一个焦点射出的一样”。

二、圆锥曲线光学性质的应用

光学性质在生产和科学技术上有着广泛地应用。这里仅举例说明这些光学性质在解圆锥曲线的有关问题中的应用。

应用圆锥曲线光学性质解题,特别是切线问题是十分方便的。其间要注意一个基本关系式的应用,即“过投射点的曲线的切线与入射线、反射线成等角”。如图4MN切曲线C于点P,则∠APM=∠BPN。这是很容易由物理学的“入射角等于反射角”及平面几何中“等角的余角相等来证明的。


1、求证:椭圆

和双曲线
在交点处的切线互相垂直。

分析:如图5,用圆锥曲线光学性质证明∠1+∠390°即可。

证明:如图5,两曲线的公共焦点

,设P为两曲线的一个交点,PQPR分别为椭圆、双曲线的切线,连
,并延长
,由椭圆光学性质,推得∠1=∠2;由双曲线光学性质,得∠3=∠4

又∠2=∠5,∠4=∠6(对顶角相等),

所以∠1=∠5,∠3=∠6(等量代换)。

又∠1+∠3+∠5+∠6180°,

所以∠1+∠390°,即PQPR,命题得证。

总结:(1)本题也可采用代数运算证出

的方法来证明,但比较复杂。这里采用光学性质证明法则直观简捷。(2)由本题得到一个一般性命题:焦点相同的一个椭圆与一双曲线在交点处的切线互相垂直,于是有定义:两圆锥曲线在交点处的两条切线互相垂直,叫做这两曲直交。


2、如图6,已知

是椭圆
的焦点,
分别是
在椭圆任一切线CD上的射影。(1)求证:
为定值;(2)求
的轨迹方程。

分析:(1)欲证

为定值,即证
为定值(由光学性质推得
),从而知应用余弦定理于
即可获证。)(2)求出
分别为定值即知其轨迹,易得轨迹方程。

证明:(1)设Q为切线,由椭圆光学性质推知

设为
,则

所以

,则在
中,

所以

为常数,即定值。

2)设点OCD上的射影为M,则OM是直角梯形

的中位线,于是有

中,

同理

所以

的轨迹是以O为圆心,a为半径的圆,其方程为


3、设抛物线

的焦点为F,以FA44)为焦点作椭圆,使其与已知抛物线有公共点(如图7),当长轴最短时,求椭圆方程。

分析:求解的关键是光线FP的反射线PA平行于x轴。

解析:设以点A44)、F40)为焦点的椭圆为

a为长半轴长)。①

再设为抛物线与椭圆的公共点,

由椭圆第一定义知:

         

即长轴长2a等于抛物线上一点P到两定点AF距离之和,若2a最小,当且仅当椭圆与抛物线相切。此时,由圆锥曲线的光学性质知,光线FP的反射线PA平行于x轴。

所以P14)。由②知

所以所求的椭圆方程为

 

4、如图8,已知探照灯的轴截面是抛物线

,平行于对称轴
的光线于此抛物线上的入射点、反射点分别为PQ,设点P的纵坐标为
,当a为何值时,从入射点P到反射点Q的路程PQ最短?

分析:设

,由抛物线光学性质知PQ过焦点
,故可用弦长公式建立目标函数
,求出最小值条件a即可。

解析:由抛物线光学性质知光线PQ必过其焦点

,设点
,则直线PQ的方程为

     

将方程

代入①,消去x,得

故知点Q坐标为

当且仅当

,即
时,等号成立。

此刻

,即当
时,亦即入射点
、反射点
最短,过时PQ恰好关于x轴对称。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
【高考必备】圆锥曲线的相关公式与重要拓展结论
高考数学基础知识汇总
魏立国发现一个圆锥曲线统一性质的心路历程江苏省响水中学魏立国
组合教育:高考数学必考知识点之圆锥曲线方程
对2012年高考福建卷理科解析几何题的研究
【NO.341】抛物线切线的一个性质与推论
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服