打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
全面解读尖晶石型高压镍锰酸锂

高压镍锰酸锂正极材料在高能锂离子电池领域的应用极具潜力。阻碍其规模化应用的主要原因是材料与电解液之间的副反应较为严重。另外,人们发现减小其颗粒尺寸可以提高倍率性能,但随之而来的是材料的比表面增加又会加剧副反应的进一步发生,因此,需要制备合适粒径的LiNi0.5Mn1.5O4,在保证倍率性能的同时,又能提高电池能量密度和循环寿命。这也就需要我们对LiNi0.5Mn1.5O4(LNMO)本身的性能有非常清楚的认识。

首先我们来了解一下LNMO的晶体结构。LNMO以两种多晶型态存在:一种是由Fd3m空间群组成的面心立方相,即无序LNMO(D-LNMO),其中,锰离子和镍离子随机的分布在16d位点处;另外一种是由P4332空间群组成的原始立方相,即有序LNMO(O-LNMO),其中,锰离子和镍离子有序的分布在4a和12d位点处。其中,D-LNMO有两种形式存在,即氧缺陷LiNi0.5Mn1.5O4-δ和镍缺陷LiNi0.5-xMn1.5-xO4。锂离子在LNMO中以三维形式迁移,即通过空八面体位点从一个四面体位点转移到附近位点,活化能垒受到过渡金属静电排斥影响巨大。理论研究表明,O-LNMO中锂离子迁移的活化能低至300meV,与通过第一性原理计算得到的锂离子扩散率值10-8-10-9 cm2/s相一致。

那么如何通过测试表征区分D-LNMO和O-LNMO有以下三种方法:

XRD分析:D-LNMO的晶格参数((8.188 )稍大于O-LNMO((8.178 ),这是因为D-LNMO中有更多的Mn3+存在。

Raman分析:580-620cm-1区域是八面体中MnO6的Mn-O伸展模式特征区域。595 cm-1和 612 cm-1两处峰代表的是F2g振动模式。其中,O-LNMO在此两处的峰强度高于D-LNMO(见图1),这是因为O-LNMO中锰和镍的排布非常有序。

充电电压平台不同:对于D-LNMO,在4V处出现了一个小的电压平台,这是由Mn3+/ Mn4+电对导致的(见图2)。这一情况并未出现在O-LNMO中。

图1. D-LNMO和O-LNMO的XRD (a)和Raman (b)图谱

图2. D-LNMO和O-LNMO的部分充电曲线,倍率C/200。

接下里,本文就D-LNMO和O-LNMO的传输性能(电导率、离子传导率和化学扩散)以及电极-电解液界面电荷转移反应进行系统解读,为将来该材料的应用与优化打下基础。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
无钴正极材料高压运行成功!有望规避电池材料供应链风险,提高能量密度
核壳结构“富锂富镍”材料:高电压(4.6V)下可稳定循环500周|能源学人
有色金属锰行业深度报告:不容忽视的第四种电池金属
层状结构正极材料的发展历程——完美主义NCM111
无钴无锰高镍层状氧化物正极材料!助力长寿命安全锂离子电池
新一代锂离子电池三元正极材料NCM811及其改性方法的专利分析
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服