打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
《超高性能混凝土的制备与性能》 www.wenku1.com

66

材料导报A:综述篇

2013年5月(上)第27卷第5期

超高性能混凝土的制备与性能。

邓宗才1,肖

锐1,申臣良2

(1北京工业大学建筑工程学院,北京100124;2北京正华混凝土有限公司,北京100176)

摘要

超高性能混凝土(UHPC)是一种强度极高、耐久性极佳的新型水泥基复合材料,钢纤维的掺入能有效

提高其韧性,使其在建筑工程领域有很好的应用前景。对国际、国内主要研究成果进行归纳,介绍UHPC的带3备原理,对UHPC的组成材料、配合比及制备工艺进行分析和说明,阐述其基本力学性能、耐久性及应用方式。

关键词

超高性能混凝土制备原理制备技术力学性能耐久性

中图分类号:TU528文献标识码:A

AReview

on

PreparationandPropertiesofUltra-high

PerformanceConcrete

DENGZongcail.XIAORuil,SHENChenlian92

(1

CollegeofArchitectureandCivilEngineering,BeijingUniversityof

Technology,Beijing

100124;

BeijingZhenghuaConcreteCompanyLimited,Beijing100176)

newkindofcementitiousmaterialwithgoodapplica—

can

Abstract

Ultra-highperformanceconcrete(UHPC)is

tionfutureincivilengineering,becauseofultrahighstrengthandhighdurability.Hightoughnessbeacquiredfor

UHPCbyincorporatingsteelfibers.Bycollectingandanalyzinginternationalanddomesticresearchresults,thepre-parationprinciplesofUHPCPC

are

are

introduced,therawmaterials,mixtureproportionsandpreparingtechniquesofUH‘

are

analyzed,themechanicalpropertiesanddurabilityofUHPC

are

described,andtheapplicationanddevelopment

ofUHPCsummarized.

ultra-highperformanceconcrete,preparationprinciple,preparationtechnique,mechanicalproper—

Keywordsty,durability

引言

20世纪90年代,法国RichardP等以超细粒聚密水泥和

粉末,使用高效减水剂降低水胶比,高温养护,另外通常掺人

适量微细纤维[1]。其中,去除粗骨料有助于提高UHPC材料

的均质性,并可提高骨料与水泥浆的界面粘结性能,减少微裂缝。在微观结构上,混凝土受力后骨料与胶凝材料界面的

剪应力和拉应力导致裂缝出现在粘结面,由于骨料粒径与裂

宏观无缺陷水泥为基础,研发出一种新型混凝土材料——活

性粉末混凝土(Reactivepowderconcrete,RPC)[1],并申请了

专利。现欧洲通常将采用RPC制备原理的水泥基材料称为

超高性能混凝土(Ultra-highperformanceconcrete,UHPC)。为强调纤维的作用,国际上通常将掺人纤维的UHPC称为

缝大小呈比例关系,减小骨料粒径抑制了荷载作用下骨料与

浆体界面裂缝的产生与发展。传统混凝土中水泥浆的收缩

被骨料构成的刚性骨架限制,造成骨料与浆体的界面缺陷,

因此UHPC增大了胶材用量,并选择细骨料,使骨料包裹在

超高性能纤维混凝土(Ultra-high

forced

performancefiberrein—

concrete,UHPFRC),该材料其实是一种超高性能(纤水泥浆中,当浆体收缩时骨料随其作用力移动,减少因浆体

收缩引起的界面缺陷。

维增强)水泥砂浆。与传统混凝土相比,UHPC具有优异的力学性能,包括极高的抗压强度,优良的抗冲击、抗疲劳性能,掺入纤维后材料的抗拉性能、韧性显著提高;另外,UH—PC材料内部致密,具有极佳的耐久性。

1.1

通常以硅粉作为超细活性粉末,它可以填充水泥颗粒间的空隙;同时,硅粉为细微球体,可提高拌合物的流变性;另外,其二次水化反应生成的C一孓H凝胶亦有助于提高材料强

度。

I愀的制备

制备原理

高温养护的目的是改善UHPC的微观结构。由于在

UHPC的制备过程中通常使用硅粉,90℃左右的高温养护

UHPC的基本制备原则为:去除粗骨料,掺人超细活性可有效加速硅粉参与的二次水化反应,其晶体形貌也会发生

*中国水利水电科学研究院流域水循环模拟与调控国家重点实验室开放研究基金(IWHR-SKL-201204)邓宗才:男,1961年生,博士,教授,博士生导师,主要从事新型复合材料及其结构研究

E-mail:dengze@bjut.edu.cn

肖锐:通讯

作者,男,1984年生,博士生,研究方向为超高性能混凝土制备与应用技术E-mail:xrxiaorui@163.corn

万方数据

超高性能混凝土的制备与性能/邓宗才等

变化。在250~400℃的高温下,硬化的浆体脱水生成硬硅钙石,此时UHPC具有更高的强度。

不掺入纤维时,UHPC材料基本无延性,在荷载作用下发生脆性破坏,纤维的掺入可改善UHPC材料的延性和抗拉性能。

1.2组成材料、配合比及制备工艺1.2.1组成材料

Richard

P等u]使用细石英砂、水泥、石英粉、硅粉、高效

减水剂、钢纤维制备RPC,并使用钢粉来制备抗压强度超过

600

MPa的RPC800。随后研究者发现可将其它一些矿物

掺合料加入到UHPC中替代部分原有组成材料。UHPC的组成材料可以按用途分为超细活性粉末、水泥、掺合料、高效

减水剂、纤维。

(1)超细活性粉末

超细活性粉末具有三大特点:颗

粒粒径小,可填充较粗的胶凝材料的颗粒间空隙;改善拌合物流变性,减少用水量;有足够活性,反应后有效提高UHPC强度。由于硅粉具备上述特点,自UHPC材料出现后,该材料一直被视为难以取代的超细活性粉末组分。最新研究发现,可将水泥磨细至规定细度成为超细水泥,使其具备超细活性粉末的特点,实现不使用硅粉制备UHPCI2-5]。

(2)水泥

水泥在UHPC中的作用与混凝土相同,即

通过水泥浆体的硬化将骨料胶结成一个坚实的整体。由于水泥中C。A水化反应需水量较高,因此建议采用低C。A含量的水泥n]。若不采用普通水泥,直接用超细水泥制备UH—PC,虽然对材料的经济性有所影响,但制备更便捷[2。]。由于UHPC水泥用量大,导致材料在养护过程中产生大的收缩变形,因此建议在构件设计中使用非闭合截面形式,避免收缩

造成应力分布不均匀。

(3)掺合料

加入适量的掺合料可节约水泥和降低成

本,并改善UHPC性能。石英粉作为石粉的一种,也可被视

为掺合料。YaziclH等口3采用高炉粒化矿渣和粉煤灰取代

UHPC中的部分胶凝材料,研究了不同养护条件下材料的力学性能,发现高炉粒化矿渣的取代效果好,并可降低硅粉用量。若采用超细水泥作为超细活性粉末,高炉粒化矿渣也能取代部分水泥,并可保证材料性能和降低成本[3“]。

(4)骨料

骨料在UHPC中起到填充和骨架作用。

骨料的种类、粒径、颗粒形状、用量都会影响材料的流变性和强度。RichardP等n1选用的骨料是粒径范围0.15~

0.6

mm的石英砂,在之后的研究和应用中,骨料粒径范围往

往被放宽。YangS

L等m分别采用传统石英砂、两类粒径小

于5mm的细砂、回收的碎玻璃作为骨料制备UHPC并进行

对比试验,发现碎玻璃作为骨料时UHPC的力学性能明显降低,原因是碎玻璃骨料的颗粒级配不佳导致密实度相对较低,且玻璃光滑的表面弱化了浆体与骨料之间的粘结性能。

(5)纤维

纤维主要用于提高材料的延性和抗拉性

能,因长纤维易相互搭接,降低拌合物流动性,故不宜使用长

度超过30mm的钢纤维,通常采用长度13mm以下的微细钢纤维。RedaMM等嘲采用长度3~6mm的微型碳纤维

制备新型UHPC,发现50

mmX50mmX50mm立方体抗压

万方数据

.67.

强度可超过200MPa,但由于纤维过短,粘结力较差,导致材

料受弯时延性不足。Ryu

S等嘲研究了钢纤维类型对

UHPC力学性能的影响,发现选用的几种钢纤维在UHPC的制备便捷性和抗压性能方面差异不大,但合适的纤维长度和长径比可改善UHPC的受弯性能。另外,纤维的分布方

式也会明显影响材料的受弯、受拉性能。

(6)水

为减小孔隙率,UHPC的用水量很低,但用水

量过低也会使气泡因拌合物流变性变差而不易排出,并影响材料强度。在UHPC的制备过程中,通常先寻找最小用水量,然后再对用水量、减水剂等进行微调,在保证力学性能的同时获得最佳的工作性。

(7)减水剂

为了控制用水量,需要大量掺入高效减

使拌合物具有较优的工作性。

1.2.2配合比

基于获得较佳的力学性能同时保证材料的经济性,UH—PC配合比中超细活性粉末在胶凝材料中所占比例一般为5%~20%,掺合料的用量通常不超过40%,适量掺人石英粉可有效降低用水量,利于提高材料的密实度和强度。在低用水量下,为保证拌合物的工作性,砂胶比一般为0.9左右。高效减水剂的用量一般为o%~2%。为使UHPC具有较好的韧性同时保证材料的经济性,钢纤维的体积掺率通常为

1.5%~3%。

1.2.3制备工艺

一般采用以下常规工艺制备UHPC:首先将骨料和胶凝材料倒入搅拌机进行搅拌;搅拌均匀后加人水和减水剂(逐渐或分次加入更有利于水和减水剂的分散);拌合物由颗粒状转变为胶体状态后,加入钢纤维进行搅拌(当钢纤维用量较大时,可以逐渐或分次加入);待钢纤维分散均匀后进行浇

筑,并振动成形(高流动度的UHPC可实现自密实);最后进行养护。

高温可改变C-S-H凝胶的结构,并激发硅粉等参与的火山灰反应,因而可使UHPC获得更高的强度[1…。在试件拆模后,主要有3种养护方式:常温养护、90℃左右高温养护和200℃以上蒸压养护。一般情况下,常温养护的UHPC强度

比90℃高温养护的低10%~30%,虽然采用200℃以上蒸

压养护可以获得更高的强度,但由于设备限制,一般采用前

两种养护方式。

KaufmannjEll]采用离心法、SchachingerI等[12]和Gerli—cher

T等‘133通过抽真空的特殊工艺,降低了材料含气量,使

材料强度明显提高。

I胱的性能

2.1

力学性能

典型的UHPC基本力学性能见表1。与高性能混凝土

(HPC)相比,UHPC抗压强度显著提高,因此可有效降低构

件的自重和截面尺寸。钢纤维的掺入使UHPC延性增加,

抗弯、抗拉强度以及断裂能均明显优于HPC。

水剂,一般选用聚羧酸减水剂。但是,减水剂掺量过多易导

致UHPC拌合物的缓凝。因此,应注意控制减水剂用量,以

.68.

材料导报A:综述篇

受压性能

2.1.3

2013年5月(上)第27卷第S期

2.1.1

黄政宇等n41采用单轴压缩试验研究不同钢纤维掺量下

UHPC的力学特征,并对其破坏形态进行分析,结果表明:钢

受弯性能

UHPC的弯曲性能试验研究n63表明,试件的峰值荷载

随着纤维含量的增大而提高,荷载一挠度曲线的下降段随纤维

掺量的增大而变缓,材料韧性提高。掺入钢纤维后UHPC

纤维掺量较低时(不超过1%),轴压试验试块以劈裂破坏为主,试件超过极限应变后产生多条轴向裂缝,并随压力的增大逐渐扩展、连通,其中~条裂缝发展成为主裂缝,导致试件开裂破坏;钢纤维掺量较高时(2%以上),试件以剪切破坏为主,破坏时会出现一条贯穿试件的剪切裂缝,裂缝与轴向成

30。,剪切面上的钢纤维被拔出或拉断。

的受弯破坏过程分为3个阶段:处于弹性阶段时,荷载较小,钢纤维与基体共同承担荷载,荷载一挠度曲线呈直线;随着荷

载的增大,拉区变形达到UHPC初裂应变,材料基体出现裂

缝,跨越裂缝的纤维通过界面传递应力,此阶段为弹塑性阶段;最后随着钢纤维与基体之间的粘结强度达到极限,钢纤维被逐步拔出,同时吸收很大的能量,荷载一挠度曲线进入下

降段。

2.1.2拉伸性能

安明甜等D5]通过拉伸试验发现未掺钢纤维的UHPC试件受拉开裂即断裂,应力一应变曲线的下降段难以获得,为脆

性破坏。当钢纤维掺量达到1%时,试件开裂后应力一应变曲

2.1.4其它性能

掺人纤维后的UHPC具有优良的动态力学性能。对

线出现明显下降段;当钢纤维掺量达到2%时,破坏过程与钢

纤维掺量1%的试件相似,但应力一应变曲线的下降段更加平

UHPC抗冲击性能的研究表明,掺入钢纤维降低了UHPC高速冲击下的损伤,材料的抗冲击性能提高[17J8|。另外,安明船等[1们通过2%钢纤维体积掺率的UHPC单轴受压疲劳性能试验获得了疲劳曲线(S-N曲线),疲劳极限强度为其静极限轴心抗压强度的57%,明显优于普通混凝土。受弯疲劳性能试验表明在低周和高周疲劳荷载作用下,掺入钢纤维的UHPC即使出现裂缝,仍拥有优异的耐疲劳性能[2…。

缓且延伸较长,试件开裂后可承受更大的拉力。其原因是基体开裂以后,跨越裂缝的钢纤维开始承受外力作用,随着裂缝的发展,钢纤维承受的拉力逐渐增大,随着钢纤维的拔出或拉断,曲线逐渐下降。若钢纤维用量合理,可出现多裂纹

扩展现象。

表1

Table1

UItPC材料的基本力学性能

BasicmechanicalpropertiesofUHPC

表2超高性能混凝土、高性能混凝土和普通混凝土的耐久性对比

Table2

DurabilityofUHPC.HPCandOPC

2.2耐久性

SchmidtS等[26。总结了欧洲UHPC耐久性的研究情况,

究表明其28d碳化深度仅为0~0.3mm,远低于HPC和OPC(普通混凝土)[27’28舟…。在耐腐蚀性方面,刘斯凤等[273将UHPC浸入我国新疆盐湖卤水中进行试验,3个月后UHPC的质量损失为0,动弹模损失仅为0.5%;杨吴生等晒3将养护

后的试件置于人工海水和自来水中浸泡180d,测得的抗压

如表2所示。国内对UHPC的耐久性也已有系统研究。在

抗冻性方面,试验表明在300次冻融循环以后,UHPC的耐

久性系数均保持在99以上[27q9|。对UHPC抗氯离子渗透

性(NEL法)的研究发现,其氯离子扩散系数均低于0.4,故材料的抗氯离子渗透性能极佳Ez8,30]。UHPC的抗碳化性研

强度和抗折强度略高于浸泡前,证明UHPC具有很好的抗化学侵蚀性能。另外,研究表明UHPC的耐磨性可达到优

万方数据

超高性能混凝土的制备与性能/邓宗才等

等品路面砖的要求[31]。综上所述,国内外的研究均表明UHPC具有极佳的耐久性,且远高于HPC和OPC,这是因为UHPC极低的水胶比和合理的颗粒级配使其具有极小的孔隙率和良好的微观结构。3

UHPC的应用与展望

目前,UHPC在国外已有不少工程应用,国内的工程应

用也已逐步展开。UHPC主要可应用于人行桥、楼梯板、阳

台板及外挂板等一些有轻质、美观要求的结构构件;在大跨桥梁的梁、预制构件中采用UHPC,可减少构件的截面、配筋,减轻结构质量,增大跨度,而且UHPC极佳的抗渗性可增强结构的耐久性;用UHPC建造压力管道可提高其工作压力,并增强抗侵蚀能力;用UHPC制备的固体废料储存容器可长期储存中、低放射性废料,其使用寿命可长达500年;

7-IPC也可用于路面和桥面易磨损区的修补修复;另外,由

于其具有优异的防爆和防腐性能,所以在国防工程领域也有巨大的应用价值与潜力。

为指导UHPC结构设计与应用,一些国家结合相关试验,在已有的混凝土、纤维混凝土结构设计规范的基础上根据UHPC材料的特点进行修正和改进,提出了UHPC结构构件的设计方法。法国AFGC/SETRAc32]和德国DAfStBUHPCI33]均明确了UHPC构件的设计方法。国内,李莉[341分别对UHPC简支梁和连续梁进行试验研究,给出了UH—

PC梁承载力、刚度和裂缝的计算公式,并建立了塑性铰长度

和弯矩调幅系数的计算公式。张明波[3列进行了预应力UH—PC梁的全过程分析,提出了开裂承载力和极限承载力控制的设计方法。这些研究成果也为国内UHPC构件的设计提供了思路和依据。

参考文献

RichardP,Cheyrezy

Compositionofreactivepowder

concretes[J].Cem

Concr

Res,1995,25(7):1501

2邓宗才,申臣良,肖锐.掺超细水泥的施工便捷型活性粉末

混凝土:中国,20.1210266936.xEP3.2012—11—14

肖锐,邓宗才,申臣良.掺超细水泥的活性粉末混凝土:中国,201210266785.8[P].2012—12—05

肖锐,邓宗才,申臣良.掺超细水泥的经济型活性粉末混凝

土:中国,201210266869.1iP].2012—11—14

5肖锐,邓宗才,申臣良,等.掺超细水泥的新型活性粉末混凝

土[J].混凝土,2013(2):75

YazlCl

H,Yardimm

MY,YigiterH,eta1.Mechanical

propertiesofreactivepowder

concrete

containinghigh

VO-

lumesofgroundgranulatedblastfurnaceslag[J].Cem

ConcrCompos,2010,32(8):639

YangSL,MillardSG,SoutsosMN,eta1.Influenceof

aggregate

andcuringregime

on

themechanicalpropertiesof

ultra-highperformancefibrereinforcedconcrete(UHPFRC)

口].Constr

BuildMater,2009,23(6):2291

RedaMM,ShriveNG,GillottJE.Microstructuralinves—万方数据

69

tigationofinnovativeUHPCIJ].CemConcr

Res,1999,29

(3):323

RyuGS,KangST,ParkJJ,eta1.Evaluationoffunda—mentalUHPCpropertiesaccording

tO

theshapeofsteelfiber

fJ].Key

Eng

Mater,2011,452-453:717

10Cheyrezy

M,MaretV,FrouinL

Microstructuralanalysis

ofRPC(reactivepowderconcrete)rJ].CemConcr

Res,

1995,25(7):149111

KaufmannJ.Developmentofspecialmortarsforan

applica—

tionincentrifugalcastingprocess[Cff/InternationalSympo—

sium

on

UltraHighPerformance

Concrete.Kassel,Germa—

ny,2004:757

12SchaehingerI,SchubertJ,MazanecO.Effect0fmixingand

placementmethods

on

freshandhardened

ultrahighper—

formance

concrete(UHPC)[C]//InternationalSymposium

on

UltraHigh

PerformanceConcrete.Kassel,Germany,

2004:575

13GerlicherT,HeinzD,UrbonasL.Effectoffinelyground

blastfurnaceslag

on

thepropertiesoffresh

andhardened

UHPCIC]//SCcond

International

Symposium

on

UltraHigh

Performance

Concrete.Kassel,Germany,2008:367

14黄政宇,谭彬.活性粉末钢纤维混凝土受压应力一应变全曲

线的研究口].三峡大学学报:自然科学版,2007(5):41515安明酷,杨志慧,余自若,等.活性粉末混凝土抗拉性能研究

[J]。铁道学报,2010(1):54

16张明波,阎贵平,闫光杰,等.200MPa级活性粉末混凝土抗

弯性能试验研究[J].北京交通大学学报,2007(1):81

17

ZhangY,Sun

W,Liu

S,eta1.PreparationofC200green

reactivepowderconcrete

and

itsstatic-dynamicbehaviors

[J].Cem

ConcrCompos,2008,30(9):831

18RongZ,Sun

W,ZhangY.Dynamic

compressionbehavior

ofultra-highperformancecementbasedcomposites[J].IntJ

ImpactEng,2010,37(5):515

19AnM,YuZ,SunM,eta1.FatiguepropertiesofRPC

un—

dercyclicloadsofsingle-stageandmulti-level

amplitude[J].

JWuhanUniversityofTechnology:MaterSciEd,2010,25

(1):16720

ShaheenE,ShriveNG.Cyclicloadingandfracturemecha-nicsofDuctalconcrete[J].IntJFract,2007,148(3):251

21

ChanvillardG,RigaudS.Completecharacterizationoften—silepropertiesofDuctalUHP-FRC

according

totheFrench

recommendations[C]//Proceedingof

FourthInternational

Workshop

on

High

PerformanceFiberReinforcedCementComposites(HPFRCC

4).AnnArbor,USA,2003:95

22

Parra-MontesinosGJ,Reinhardt

W,Naaman

AE

CARDIFRC--From

conceptto

industrial

application[c]//

HighPerformanceFiberReinforcedCementComposites

(HPFRCC6).Ann

Arbor,USA,2011:397

(下转第95页)

烘烤硬化钢板的研究进展/邝春福等

2224

95

24RichardsMD,DrexlerES,FeketeJR,eta1.Aging-induced

anisotropyofmechanicalpropertiesinsteelproducts:Impli—cationsforthemeasurementofengineering

17崔岩,胡吟萍,王瑞珍,等.平整和自然时效对超低碳烘烤硬

化钢板性能的影响[J].特殊钢,2010,31(4):49

18Moon-HiHong,Noi—HaCho,Sung-IKim,etal。Development

ofCu-bearingexposed19

bake-hardenable

steelsheets

for

automotive

25

properties[J].

MaterSciEngA,2011,529:184

DurrenbergerL,Lemoineastrainandbake-hardening

X,MolinaribA.Effectsof

on

pre-top-

panels[J].MeterMaterInt,2011,16(6):883

Bhattacharya.Metallurgicalperspectives

on

thecrashpropertiesof

Debanshuad—

26

hat

sectionl,J].JMater

ProcessTechn,2011,211:1937

vancedsheetsteelsforautomotiveAdvancedSteels,2011:163

applications[M].Beijing:

MarilenaCarmen,FredericBarlat.AnewmodelforFLD

predictionbased

on

advancedconstitutive

equations[J].IntJ

20刘鹏鹏,李麟.连续退火工艺对含钒烘烤硬化钢力学性能的

影响[J].上海金属,2011,33(2):18

21刘光明,康永林,陈继平,等.390M.Pa级Ti+Nb超低碳

高强度BH钢组织性能研究[J].材料工程,2010(4):522王华,史文,何艳霖,等.Mn和P在超低碳烘烤硬化钢中的

分布形态及对其拉伸行为的影响研究[J].金属学报,2011,

47(3):263

27

MaterForrn,2010,3:191

BerbenniS,FavierV,LemoineX,eta1.Amicromechanicalapproach

tO

modelthebakehardeningeffectforlOWcarbon

Mater,2004,51:303

steels[J].Scr

28BallarinV,SolerM,PerladeA,eta1.Mechanismsandmode-

lingofbake-hardening

steels[J].MetallMater

TransA,

2009,40(7):1367

23陈银莉,苏岚,赵爱民,等.390MPa级超低碳BH钢织构演

变规律[J].材料热处理学报,2012,31(1):117

(责任编辑沈耀红)

、p、声、p∥妒≯p矿、ppppp妒pp≯、pppp妒pppp≯pp、ppp≯p≯、妒p妒p≯、pp、妒pppp、p

(上接第69页)

23

建筑技术,2007(5):367

AE,El—TawilS,eta1.Ultra-highper—andfiberreinforcedconcrete--Achieving

WilleK,Naaman

fcIrmance

concrete

29杨吴生,黄政宇.活性粉末混凝土耐久性能研究rJ].混凝

土与水泥制品,2003(1):19

30宋少民,未翠霞.活性粉末混凝土耐久性研究口].混凝土,

2006(2):72

strengthandductilitywithoutheat2012,45:30924

curingl,J].Mater

Struct,

Wille

K,KimDJ,eta1.StrainhardeningUHP-FRCwith

31李忠,黄利东.钢纤维活性粉末混凝土耐久性能研究I-J].

市政技术,2005(4):255

32

lowfiber

contentsl,J;.Mater

of

Struct,2011,44(3):583

25HabelK,VivianiM,Denari6E,eta1.Developmentofthe

mechanicalreinforced

properties

an

AFGC/SETRA.Ultrahigh

performance

fiber-reinforced

ultra-high

performancefiber

ConcrRes,2006,

33

concrete[S].2002

DAfStB.Richtlinie

stahlfaserbeton——Technicalguidelines

forsteelfiberreinforcesconcrete:Part

concrete(uHPFRc)[J].Gem

36(7):1362

26SchmidtM。FehlingE.Ultra-high-performanceconcrete—

Research,developmentandapplicationinSpecialPublication,2005,228:51

1—4Is].2003

34李莉.活性粉末混凝土梁受力性能及设计方法研究[D].哈

尔滨:哈尔滨工业大学,2010

35张明波.基于承载力控制的预应力RPC梁设计理论研究

[D].北京:北京交通大学,2009

europe[J].ACI

27刘斯凤,孙伟,林玮,等.掺天然超细混合材高性能混凝土的

制备及其耐久性研究口].硅酸盐学报,2003(11):108028安明拮,杨新红,王军民,等.RPC材料的耐久性研究[J].

(责任编辑房威)

万方数据

超高性能混凝土的制备与性能

作者:作者单位:刊名:英文刊名:年,卷(期):

邓宗才, 肖锐, 申臣良, DENG Zongcai, XIAO Rui, SHEN Chenliang

邓宗才,肖锐,DENG Zongcai,XIAO Rui(北京工业大学建筑工程学院,北京,100124), 申臣良,SHENChenliang(北京正华混凝土有限公司,北京,100176)材料导报

Materials Review2013,27(9)

本文链接:http://d.g.wanfangdata.com.cn/Periodical_cldb201309015.aspx

本文由第一文库网(www.wenku1.com)首发,转载请保留网址和出处!
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
设计师新宠| 超高性能混凝土
高强混凝土
【上】赵筠:超高性能混凝土(UHPC)的性能和应用简述
C60钢纤维自密实混凝土的配合比设计和应用
纳米粒子和钢纤维增强混凝土抗碳化和抗渗性能
这些建筑新材料,好看又实用,且被大规模应用……
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服