打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
生信 简单实验:代谢相关预后分析8 案例
这篇文章2022年发表在Journal of Translational Medicine上:Identification of molecular subtypes and a novel prognostic model of diffuse large B-cell lymphoma based on a metabolism-associated gene signature。

期刊Journal of Translational Medicine是BioMed Central(BMC)出版社旗下期刊,影响因子8.44,JCR Q1区,中科院二区(医学)。

研究主要涉及的分析思路如下:
1.从GEO数据库获取DLBCL患者的基因表达和临床资料,通过共识聚类鉴定2个代谢相关的分子亚型;
2.在GEO训练队列中,Lasso-Cox回归建立了14个代谢相关基因(MAGs)的预后风险模型;
3.在GEO内部队列和TCGA外部队列中进行验证预后模型可靠性;
4.GO、KEGG和GSVA用于探讨高风险和低风险组之间富集通路的差异;
5.ESTIMATE、CIBERSORT和ssGSEA分析用于评估免疫微环境;
6.利用WGCNA分析在14个MAGs中鉴定了两个hub基因,并通过TMA用mIHC进行了初步实验验证。
研究的技术路线图如下:

图1.本研究的技术路线图
接下来我们看一下研究结果

图2. 共识聚类和两个集群之间不同的免疫谱

图3.构建GSE10846训练队列中的风险模型并验证

图4.GSE10846数据集的风险评分的临床相关性与列线图

图5.GSE10846中的高、低风险人群之间不同的免疫图谱

图6.两个hub基因的鉴定及其与免疫细胞的关系

图7.实验验证PLTP与预后和免疫微环境关系

图8.实验验证PHKA1与预后和免疫微环境关系
最后我们总结一下:
研究共包括7张图,其中包括5张生信分析结果图,2张mIHC实验验证图。生信分析和实验结果分析结果如下:
1)通过单因素Cox回归分析获得了GSE10846数据集中92个预后相关的MAGs;
2)使用共识聚类将412例患者聚类为2个不同的代谢相关分子亚组;1组患者的预后较差,且免疫抑制细胞和免疫检查点表达增加,表明存在免疫抑制肿瘤微环境;
3)LASSO-Cox回归分析生成了14个MAGs构建代谢相关预后风险模型,该模型在GEO内部队列和TCGA外部队列中得到了进一步验证。
4)该预后模型也成功预测了Rituximab联合化疗(R-CHOP)队列的总生存期;
5)建立了一个列线表(Nomogram),发现风险评分对预后贡献最大,列线表预测OS与实际结果一致性很高
6)分析了风险评分与肿瘤免疫微环境之间的关系,高风险组中免疫抑制细胞和免疫检查点表达的丰度较高,表明存在免疫抑制肿瘤微环境;
7)通过WGCNA筛选预后风险模型中的hub基因PLTP和PHKA1
8)实验验证了TMA队列中hub基因表达及其与预后和免疫微环境的关系。
本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
文献解析 | 看干细胞肝癌免疫功能,如何拿下6分+!
最新7.2分SCI,又见“免疫”分型,从投稿到接收不到一个月!
自噬+单细胞是怎么发8+的生信文章?
生信加实验文章解读
抓热点!6 能量代谢相关全景分析
免疫浸润:凡是打不倒你的都会让你更强大
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服