打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
C语言中的指针和内存泄漏

对于任何使用 C 语言的人,如果问他们 C 语言的最大烦恼是什么,其中许多人可能会回答说是指针和内存泄漏。这些的确是消耗了开发人员大多数调试时间的事项。指针和内存泄漏对某些开发人员来说似乎令人畏惧,但是了解了指针及其关联内存操作的基础,就无所畏惧了。

先介绍三部分内容:

1、导致内存破坏的指针操作类型

2、在使用动态内存分配时必须考虑的检查点

3、导致内存泄漏的场景

可能出错的几个方面:

1、未初始化的内存

如:p已被分配了 10 个字节。这 10 个字节可能包含垃圾数据。

char *p = malloc ( 10 );

垃圾数据

如果在对这个p赋值前,某个代码段尝试访问它,则可能会获得垃圾值,您的程序可能具有不可预测的行为。p可能具有您的程序从未曾预料到的值。

结合使用memset和malloc,或者使用calloc。

char *p = malloc (10);

memset(p,’’,10);

现在,即使同一个代码段尝试在对p赋值前访问它,该代码段也能正确处理Null值,然后将具有正确的行为。

内存覆盖

由于p已被分配了 10 个字节,如果某个代码片段尝试向p写入一个 11 字节的值,则该操作将在不告诉您的情况下自动从其他某个位置“吃掉”一个字节。让我们假设指针q表示该内存。

原始 q 内容

覆盖后的 q 内容

结果,指针q将具有从未预料到的内容。即使您的模块编码得足够好,也可能由于某个共存模块执行某些内存操作而具有不正确的行为。下面的示例代码片段也可以说明这种场景。

char *name = (char *) malloc(11);

// Assign some value to name

memcpy ( p,name,11); // Problem begins here

在本例中,memcpy操作尝试将 11 个字节写到p,而后者仅被分配了 10 个字节。

作为良好的实践,每当向指针写入值时,都要确保对可用字节数和所写入的字节数进行交叉核对。一般情况下,memcpy函数将是用于此目的的检查点。

内存读取越界

内存读取越界 (overread) 是指所读取的字节数多于它们应有的字节数。这个问题并不太严重,在此就不再详述了。下面的代码提供了一个示例。

char *ptr = (char *)malloc(10);

char name[20] ;

memcpy ( name,ptr,20); // Problem beginshere

在本例中,memcpy操作尝试从ptr读取 20 个字节,但是后者仅被分配了 10 个字节。这还会导致不希望的输出。

内存泄漏

内存泄漏可能真正令人讨厌。下面的列表描述了一些导致内存泄漏的场景。

●重新赋值我将使用一个示例来说明重新赋值问题。

char *memoryArea = malloc(10);

char *newArea = malloc(10);

4.内存位置

memoryArea和newArea分别被分配了 10 个字节,它们各自的内容如图4所示。如果某人执行如下所示的语句(指针重新赋值)……

memoryArea = newArea;

则它肯定会在该模块开发的后续阶段给您带来麻烦。

在上面的代码语句中,开发人员将memoryArea指针赋值给newArea指针。结果,memoryArea以前所指向的内存位置变成了孤立的,如下面的图 5所示。它无法释放,因为没有指向该位置的引用。这会导致 10 个字节的内存泄漏。

5.动态分配的内存

free(memoryArea)

如果通过调用 free 来释放了memoryArea,则newArea指针也会因此而变得无效。newArea以前所指向的内存位置无法释放,因为已经没有指向该位置的指针。换句话说,newArea所指向的内存位置变为了孤立的,从而导致了内存泄漏。

每当释放结构化的元素,而该元素又包含指向动态分配的内存位置的指针时,应首先遍历子内存位置(在此例中为newArea),并从那里开始释放,然后再遍历回父节点。

这里的正确实现应该为:

free( memoryArea->newArea);

free(memoryArea);

返回值的不正确处理

有时,某些函数会返回对动态分配的内存的引用。跟踪该内存位置并正确地处理它就成为了calling函数的职责。

char *func ( )

{

return malloc(20); // make sure to memsetthis location to ‘’…

}

void callingFunc ( )

{

func ( ); // Problem lies here

}

在上面的示例中,callingFunc()函数中对func()函数的调用未处理该内存位置的返回地址。结果,func()函数所分配的 20 个字节的块就丢失了,并导致了内存泄漏。

在开发组件时,可能存在大量的动态内存分配。您可能会忘了跟踪所有指针(指向这些内存位置),并且某些内存段没有释放,还保持分配给该程序。

始终要跟踪所有内存分配,并在任何适当的时候释放它们。事实上,可以开发某种机制来跟踪这些分配,比如在链表节点本身中保留一个计数器(但您还必须考虑该机制的额外开销)。

访问空指针

访问空指针是非常危险的,因为它可能使您的程序崩溃。始终要确保您不是在访问空指针。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
C语言中的指针和内存泄漏
C++内存管理
转:c/c++内存泄露
C语言为指针动态分配内存
从原理到方法,一文讲清如何应对C语言内存泄露!
深入学习C语言:C 语言中的内存管理机制
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服