打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
【专家述评与论著】| 乳腺癌芳香化酶抑制剂耐药的研究进展

引用本文

李芷君,徐兵河乳腺癌芳香化酶抑制剂耐药的研究进展[J]. 中国癌症杂志, 2021, 31 (2): 81-89.

通信作者:徐兵河 E-mail: xubinghe@medmail.com.cn

第一作者简介

李芷君,医科院肿瘤医院博士在读。研究方向:乳腺癌临床与转化研究。

通信作者简介

徐兵河,主任医师,教授,博士研究生导师,现任国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院国家新药(抗肿瘤)临床研究中心(GCP中心)主任,国家肿瘤质控中心乳腺癌专家委员会主任委员,国家抗肿瘤药物临床监测专家委员会主任委员,中国抗癌协会肿瘤药物临床研究专业委员会主任委员,中国抗癌协会乳腺癌专业委员会前任主任委员,中国医师协会内科医师分会副会长,北京乳腺病防治学会理事长。以第一完成人获国家科技进步二等奖、第二届全国创新争先奖、何梁何利基金科学与技术进步奖,享受国务院政府特殊津贴。

作者解读

▲ 李芷君 医师

乳腺癌芳香化酶抑制剂耐药的研究进展

李芷君,徐兵河

国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院肿瘤内科, 北京 100021

[摘要]  乳腺癌是女性常见的恶性肿瘤,约70%的患者为雌激素受体(estrogen receptor,ER)和(或)孕激素受体(progesterone receptor,PR)阳性,内分泌治疗是激素受体(hormone receptor,HR)阳性乳腺癌的主要治疗方式之一。近几十年来,内分泌治疗药物不断发展并应用于临床,乳腺癌患者的复发转移风险显著降低,预后得到长足改善。芳香化酶抑制剂(aromatase inhibitor,AI)在乳腺癌内分泌治疗中发挥重要作用,然而绝大部分患者会发生原发性或继发性耐药, 因此克服内分泌治疗药物耐药对进一步提高临床疗效至关重要。从遗传学、表观遗传学及细胞内信号转导通路等方面对HR阳性乳腺癌患者AI治疗后耐药的机制及最新的研究进展进行综述,以期为临床诊疗及科研提供参考。

[关键词]  乳腺肿瘤;芳香化酶抑制剂;耐药;机制;治疗

[Abstract] Breast cancer is one of the most common malignancies in women. About 70% of patients are estrogen receptor (ER) and/or progesterone receptor (PR) positive. Endocrine therapy is one of the main treatments for hormone receptor (HR) positive breast cancer. In recent decades, endocrine therapy drugs have been continuously innovated and applied in clinical practice, the risk of recurrence/metastasis of breast cancer patients has been significantly reduced, and the prognosis has been greatly improved. Among them, aromatase inhibitors (AIs) play an important role in endocrine therapy for breast cancer. However, a large number of patients develop either primary or secondary endocrine therapy drug resistance. Therefore, it is very important to overcome endocrine therapy drug resistance to further improve clinical efficacy. This article reviewed the mechanisms and the latest research progress of drug resistance in HR-positive breast cancer after prior AI therapy from the aspects of genetics, epigenetics and intracellular signal transduction pathways, so as to provide some guidance for clinical diagnosis, treatment and scientific research.

[Key words]  Breast neoplasm; Aromatase inhibitor; Resistance; Mechanism; Therapy

乳腺癌是女性常见的恶性肿瘤之一,发病率位居女性恶性肿瘤之首[1]。作为一种高度异质性疾病,目前临床上常根据人表皮生长因子受体2(human epidermal growth factor receptor 2,HER2)、雌激素受体(estrogen receptor,ER)、孕激素受体(progesterone receptor,PR)和Ki-67增殖指数等免疫组织化学检测结果将乳腺癌分为luminal A型、luminal B型、HER2阳性型及三阴性型等[2-4];结合以上分型,评估患者预后,并指导精准治疗。

Luminal型乳腺癌表现为ER阳性和(或)PR阳性。ER属于核激素受体超家族成员,由N端结构域(N-terminal domain,NTD)、DNA结合域(DNA binding domain,DBD)以及配体结合域(ligand binding domain,LBD)等组成,其中NTD及DBD部分各包含一个激活功能结构域(分别为AF1及AF2)[5]。ER主要包括ERα和ERβ两种亚型,ERα是配体依赖性转录因子,由ESR1基因编码,通过与靶基因启动子结合从而诱导转录,调节细胞增殖、分化,因此其在肿瘤发生、发展中至关重要;而ERβ的作用尚不明确[2,6-7]

70%的乳腺癌为激素受体(hormone receptor,HR)阳性,对于此类患者,内分泌治疗则为不可或缺的部分[2,8]。内分泌治疗药物包括选择性雌激素受体调节剂(selective estrogen receptor modulator,SERM)、选择性雌激素受体下调剂(selective estrogen receptor down-regulator,SERD)、芳香化酶抑制剂(aromatase inhibitor,AI)和促性腺激素释放激素激动剂等[9]。以上内分泌治疗药物中,无论是在早期乳腺癌的辅助治疗中预防疾病复发,还是在晚期乳腺癌的一线治疗中预防疾病进展,AI治疗均已成为绝经后女性乳腺癌患者的标准治疗方法[10-11]。然而,绝大部分患者会发生原发性或继发性AI耐药,这就需要寻找并制定新的治疗策略[12-13]。本文对HR阳性乳腺癌AI治疗后耐药的机制及研究进展进行综述。

1

遗传学机制

1.1 ESR1点突变

ESR1基因突变被认为是潜在的耐药机制。临床及临床前研究[14-16]均表明,ESR1突变可存在于原发肿瘤中,也可以在接受内分泌治疗后复发转移的肿瘤中富集。原发性乳腺癌中,ESR1突变率极低,不足3%,相比之下,在既往接受包括AI在内的内分泌治疗的患者中突变率可达18%[17]。Jeselsohn等[18]发现,ER阳性转移性乳腺癌的ESR1突变率为12%,而在接受多线内分泌治疗的亚组中则上升至20%,与此同时,在初治ER阳性乳腺癌及ER阴性乳腺癌中并未检测到ESR1突变。Freitag等[19]也发现所有携带ESR1突变的患者既往均接受过AI治疗。因此,原发肿瘤的低突变率甚至无突变,以及复发转移性肿瘤的相对较高的突变率,提示ESR1突变可能是内分泌治疗获得性耐药(包括AI耐药)的基因组机制。有meta分析[20]显示,对既往接受过AI治疗的ER阳性转移性乳腺癌患者的血液样本ESR1突变进行分析,将对进一步选择内分泌治疗有临床指导意义。SoFEA及PALOMA-3试验的回顾性分析[21]显示,在AI治疗后,携带ESR1突变者对氟维司群治疗仍相对敏感,后续的SoFEA及EFECT联合分析也证实了氟维司群在ESR1突变患者中的预后优势[22]。因此,对于AI耐药的ESR1突变患者,可尝试选择含氟维司群的治疗方案。

影响LBD的ESR1突变是最常见的,发生于约40%的ER阳性转移性乳腺癌患者中,具有抗内分泌治疗作用及转录活性[23]。Robinson等[24]发现携带ESR1突变的ER阳性晚期乳腺癌LBD均受到影响,然而,在ER阴性转移性乳腺癌中,并未见ESR1突变影响LBD的相关报道。其中,Y537和D538残基是LBD最常见的突变位点。900余例转移性乳腺癌的ESR1突变谱显示,LBD中D538G突变最常见(36%),其次是Y537S(14%)[25]。在BOLERO-2试验[26]中,长期接受AI治疗的患者常发生LBD的Tyr537或Asp538突变,其他一些研究[21,25,27]也报道了这种高复发性突变。Toy等[15]发现,在缺乏激素刺激时,细胞系中的Tyr537Ser和Asp538Gly突变体可有效地诱导ER,使其活性接近或高于通过雌二醇激活野生型受体所达到的水平,说明在缺乏激素刺激的情况下,537和538残基的改变可以有效地促进ER的反激活功能。同时,也有LBD其他位点突变的相关报道[25],如E380Q、S432L、V534E、S463P等,但突变频率较低,功能尚不明确。

1.2   ESR1扩增

扩增基因产物的高表达被认为是多种癌症治疗失败、发生获得性耐药的机制[8,28]。目前,已有多项研究对ER阳性乳腺癌ESR1扩增率进行了报道,但数据结果仍存在争议。最早的研究[29]发现,大约20%的肿瘤存在ESR1扩增,之后的更多研究[18-19,30]显示,乳腺癌ESR1扩增率极低,不足3%。以上不同的数据可能是由于检测方法及标准不统一所致,如实时荧光定量聚合酶链反应(real-time fluorescence quantitative polymerase chain reaction,RTFQ-PCR)、二代测序(next-generation sequencing,NGS)等。

一些研究证实了ESR1基因扩增与ERα蛋白水平之间存在的显著相关性。研究[31]发现,在T47D细胞系中,在低浓度雌二醇作用下,野生型ESR1基因/蛋白的过度表达可促进细胞生长,并且在长期内分泌治疗后,MCF7细胞系中也检测到了标记的ESR1基因扩增和相关的ESR1蛋白水平的增加。因此,ESR1扩增可能是对雌激素剥夺的一种适应性反应。也有研究[32]表明,ESR1的扩增可以预测他莫昔芬治疗的耐药性。因此,ESR1扩增可能在AI耐药乳腺癌中很常见,应对此进一步探索。

2

表观遗传学机制及AI耐药后治疗

表观遗传学修饰引起的基因表达改变可能为内分泌耐药原因之一。表观遗传学是指由于基因启动子区组蛋白乙酰化和DNA甲基化的修饰等而引起的基因表达的改变[33]。表观遗传改变在乳腺癌中很常见,可以通过组蛋白去乙酰化酶(histone deacetylase,HDAC)抑制剂、DNA甲基转移酶(DNA methyltransferase,DNMT)抑制剂等表观遗传修饰因子来调节。研究[34-35]证实,HDAC抑制剂能够逆转肿瘤表观遗传状态的异常。体外研究[35]表明,HDAC抑制剂可以增强ER阳性乳腺癌细胞系的活性,恢复其对内分泌治疗的敏感性。

恩替诺特是选择性Ⅰ类HDAC抑制剂,已在多种细胞系中显示出抗癌作用[36]。临床前研究[37]表明,恩替诺特可通过上调ERα和芳香化酶的表达水平,从而恢复细胞对AI的敏感性,在体内外抑制肿瘤细胞的生长。Ⅱ期临床研究(ENCORE 301)[38]显示,在既往非甾体类AI治疗进展的ER阳性乳腺癌患者中,依西美坦联合恩替诺特较依西美坦单药可显著延长无进展生存期(progression-free survival,PFS)和总生存期(overall survival,OS)。同时,其安全性可控,较常见的不良事件是疲劳、胃肠道反应和血液学毒性。临床前研究[38]也证实,恩替诺特通过下调HER2表达和诱导ER表达,可以有效地逆转内分泌治疗的原发耐药。Ⅲ期E2112临床试验[39]正在进行中,旨在验证ENCORE 301的结果。

西达本胺为苯酰胺类HDAC亚型选择性抑制剂,针对第Ⅰ类HDAC中的1、2、3亚型和第Ⅱb类的10亚型,具有对肿瘤发生、发展相关的表观遗传异常的重新调控作用[40]。ACE研究[41]结果表明,与单用依西美坦相比,西达本胺联合依西美坦可显著延长患者的PFS,其中在既往非甾体类AI治疗失败的患者中获益明显。同时,西达本胺组在客观缓解率(objective response rate,ORR)、临床获益率(clinical benefit rate,CBR)等方面均优于安慰剂组。主要不良反应为血液学毒性,大部分患者可以耐受。基于以上结果,西达本胺也获批用于联合AI治疗HR阳性、HER2阴性、内分泌治疗进展的晚期乳腺癌。因此,HDAC抑制剂恩替诺特、西达本胺等药物治疗已成为非甾体类AI治疗失败患者的重要选择手段。

3

ER与信号转导通路交互作用及AI耐药后治疗

3.1    GFR信号转导通路及靶向性治疗

生长因子受体(growth factor receptor,GFR)及其下游信号转导通路的异常激活与获得性内分泌耐药相关,包括ERBB家族受体、成纤维细胞生长因子受体1(fibroblast growth factor receptor 1,FGFR1)、胰岛素样生长因子1受体(insulin-like growth factor 1 receptor,IGF1R)、丝裂原活化蛋白激酶(mitogen- activated protein kinase,MAPK)和磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/丝氨酸/苏氨酸激酶(serine/threonine kinase,AKT)信号转导通路等[42]。有研究[43]显示,GFR信号可能通过直接磷酸化激活受体AF-1结构域,或间接募集ERα共激活因子,从而增加ERα转录活性,也可能通过膜受体和下游信号抑制ERα的表达和功能,从而导致内分泌耐药。表皮生长因子受体(epidermal growth factor receptor,EGFR)或HER2过表达可以激活ER阳性乳腺癌中的MAPK,导致ERα表达缺失,因此,抑制MAPK可以重新激活ER表达并提高肿瘤对内分泌治疗的反应性[44]。同时,多项临床研究[43,45]结果显示,HER2过表达与AI耐药相关,内分泌治疗联合抗HER2靶向治疗(如曲妥珠单抗、拉帕替尼等)可显著改善患者预后,降低并逆转内分泌耐药。

3.2   PI3K/AKT/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号转导通路及靶向性治疗

PI3K/AKT/mTOR信号转导通路异常是内分泌治疗耐药机制之一[46]。该信号转导通路参与调节细胞周期进程,包括细胞生长、增殖、分化等,从而维持机体正常的生理功能。研究发现,通路的异常激活与肿瘤的发生、转移密切相关, 30%~40%的乳腺癌发生该通路异常活化[47-48]。其中,最常见的是PIK3CA基因突变(编码Ⅰ类PI3K的催化亚基p110α),尤其在HR阳性乳腺癌中,突变率高达42%[47],还有PTEN基因功能缺失突变等。这些基因突变诱导细胞增殖、肿瘤生长,并介导乳腺癌的内分泌耐药。

PI3K家族中,ⅠA类PI3K主要参与肿瘤的发生、发展过程,是由调节亚基(p85)和催化亚基(p110)组成的异源二聚体[49]。PI3K抑制剂通过抑制一种或多种PI3K,从而阻断信号转导,抑制肿瘤生长、增殖。临床前研究[50]显示,在雌二醇剥夺条件下,PI3K抑制剂可诱导PIK3CA突变的ER阳性乳腺癌细胞的凋亡,防止发生获得性内分泌耐药。同时,对于已发生耐药的细胞,氟维司群联合PI3K抑制剂可逆转乳腺癌AI耐药,诱导肿瘤细胞死亡。因此,对于伴有PIK3CA突变的AI耐药乳腺癌,PI3K抑制剂联合氟维司群是一种可选择的治疗策略。Buparlisib是一种口服泛PI3K抑制剂,靶向Ⅰ类PI3K的全部4种亚型(α、β、δ和γ)[51]。BELLE-2试验[52]表明,对于AI治疗耐药的HR+/HER2-晚期乳腺癌,在氟维司群的基础上联用buparlisib可以延长循环肿瘤DNA中存在PIK3CA突变患者的PFS,但多数患者由于耐受性差较早地终止治疗。在BELLE-3试验[53]中,进一步验证了BELLE-2的结论,且证实对于mTOR抑制剂耐药的患者,buparlisib仍可以延长患者的PFS。虽然可使患者临床获益,但其安全性相对较差,未能进行进一步探索。同时,pictilisib、taselisib也因其毒性限制了其临床应用及最佳疗效[54-55]。PIQRAY(alpelisib)是一种PI3Kα特异性抑制剂,SOLAR-1研究[56]显示,在PIK3CA突变的患者中,与仅使用氟维司群相比,alpelisib联合氟维司群几乎使中位PFS延长了一倍,有效率提高了一倍以上。目前,其已通过美国食品药品管理局(Food and Drug Administration,FDA)批准,联合氟维司群用于既往AI治疗失败的HR+/HER2-PIK3CA突变的男性或绝经后女性晚期乳腺癌。

临床前研究[57]表明,选择性AKT抑制剂capivasertib与氟维司群在内分泌敏感及耐药的ER阳性乳腺癌模型中均具有协同作用。Ⅱ期FAKTION临床试验[58]结果显示,与氟维司群单药相比,capivasertib联合氟维司群可显著延长AI耐药患者的PFS,常见的不良反应有高血压、皮疹、腹泻等,安全性尚可控。因此,AKT抑制剂capivasertib为AI耐药HR阳性乳腺癌提供了新的选择,有待Ⅲ期临床试验进一步证实。

mTOR通路与ER信号通路之间存在密切的相互作用[26]。mTOR参与组成mTOR复合物1(mTOR complex 1,mTORC1)和mTOR复合物2(mTOR complex 2,mTORC2)。mTORC1的底物S6激酶1(S6 kinase 1,S6K1),磷酸化ER的AF1,后者负责配体非依赖性受体的激活[59]。S6K1是mTOR的下游靶点之一,是细胞调控、蛋白翻译和细胞增殖的重要调节因子,雷帕霉素可导致S6K1的快速去磷酸化和失活[60]。依维莫司是一种雷帕霉素衍生物,通过与mTORC1的变构结合抑制mTOR[61]。临床前期模型中,依维莫司与AI联用可协同抑制肿瘤细胞的增殖并诱导其凋亡[62]。BOLERO-2研究[26,63]表明,对于既往非甾体类AI治疗失败的HR+/HER2-晚期乳腺癌,在依西美坦基础上联合使用依维莫司可以显著延长PFS,绝对值提高4.6个月。因此,依维莫司已被批准与依西美坦联合用于既往非甾体类AI治疗失败的HR+/HER2-晚期乳腺癌。GINECO研究[64]表明,他莫昔芬联合依维莫司与他莫昔芬单药相比,可以改善AI耐药晚期乳腺癌患者的CBR、至疾病进展时间(time to progression,TTP)及OS,继发性耐药患者获益更明显,且安全性可控。PrE0102试验[65]也证实在氟维司群基础上联用依维莫司,可使ER阳性AI耐药乳腺癌患者的PFS延长1倍以上。相比于依维莫司,同时抑制mTORC1及mTORC2的药物vistusertib并未显示出临床获益[66]。总之,依西美坦/他莫昔芬/氟维司群联合mTOR抑制剂可以逆转内分泌耐药,改善既往非甾体类AI治疗失败患者的预后。

3.3   CDK4/6/视网膜母细胞瘤蛋白(retinoblastoma protein,Rb)/E2F信号转导通路及靶向性治疗

真核细胞周期包括G1期、S期(DNA合成)、G2期和M期等[67]。CDK-Rb轴在细胞周期的进入中起重要作用。CDK4/6和细胞周期蛋白D的活性复合物使Rb磷酸化并失活,释放转录因子E2F,导致基因转录改变,并随着细胞周期G1/S期的过渡促进细胞增殖[68]。CDK4/6抑制剂通过抑制CDK4/6来阻断Rb及相关蛋白的磷酸化,导致G1期细胞周期阻滞,从而降低细胞活力和肿瘤反应[69]。据报道,雌激素与ERα的结合驱动细胞周期蛋白D1的转录,CDK4/6的激活和Rb的磷酸化推动了细胞周期的进行[69]。重要的是,内分泌耐药肿瘤能够通过保留功能性Rb蛋白维持对CDK4/6抑制剂的敏感性,特别是在联合内分泌治疗的肿瘤[70]。PALOMA-3试验[71-72]表明,无论肿瘤内分泌耐药程度、ESR1及PIK3CA突变状态如何,CDK4/6抑制剂均能使患者获益。在AI或氟维司群中加入CDK4/6抑制剂,如palbociclib、ribociclib、abemaciclib,可以显著延长HR阳性、HER2阴性转移性乳腺癌患者的PFS。基于以上结果,美国FDA批准将其与AI或氟维司群联合应用于此类患者[71,73-77]。因此,对于非甾体类AI耐药者,可选择CDK4/6抑制剂联合依西美坦或氟维司群治疗。

4

其他治疗选择

氟维司群是一种SERD,通过与ER结合从而诱导其降解[78]。研究[72]指出,对于AI治疗失败的HR阳性乳腺癌,可单独使用氟维司群或氟维司群联合CDK4/6抑制剂[73,79]。临床前研究[80]显示,氟维司群可完全阻断AI耐药细胞系的生长。对于AI耐药的ESR1突变乳腺癌,相比于依西美坦,氟维司群可显著延长PFS[21]。对SoFEA及PALOMA-3试验的回顾性分析[21]显示,在AI治疗后,氟维司群治疗可以使患者临床获益而不论ESR1突变状态,因此推荐使用含氟维司群的治疗方案。

Elacestrant是一种新型口服非甾体类SERD,临床前研究[81-82]显示,该药通过诱导ER降解,在体内外抑制ER介导的ER阳性乳腺癌细胞系的信号转导和生长,显著抑制包括ESR1突变在内的多种患者来源异种移植模型的肿瘤生长,且该药与palbociclib/依维莫司联用可表现出更好的疗效。有关elacestrant的临床试验正在进行中[83]

依西美坦是一种甾体类、不可逆性芳香化酶失活剂,其化学结构和作用机制不同于非甾体类AI。研究[84]指出,依西美坦可用于非甾体类AI治疗失败的绝经后HR阳性晚期乳腺癌,EFECT试验显示了其与氟维司群对非甾体类AI耐药患者的等效性。然而也有临床前研究[80]显示,依西美坦与非甾体类AI存在交叉耐药现象。因此,对于一种AI耐药的患者,可以尝试不同作用机制的AI,以使患者在最大程度上获益。

综上所述,ESR1突变、表观遗传学修饰引起的基因表达改变以及肿瘤细胞内信号转导通路的错综复杂联系,共同导致AI耐药。目前,针对异常信号通路的靶向阻断(如CDK4/6抑制剂、PI3K抑制剂、mTOR抑制剂等)、表观遗传学修饰的调节(HDAC抑制剂)等联合不同作用机制的内分泌药物用于AI耐药的治疗已取得了显著疗效。随着研究的深入,期待发现新的治疗靶点及治疗方式以进一步提高这类患者的治疗效果。

[参考文献]

  1. BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.

  2. SZOSTAKOWSKA M, TRĘBIŃSKA-STRYJEWSKA A, GRZYBOWSKA E A, et al. Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals[J]. Breast Cancer Res Treat, 2019, 173(3): 489-497.

  3. PARKER J S, MULLINS M, CHEANG M C, et al. Supervised  risk predictor of breast cancer based on intrinsic subtypes[J]. J Clin Oncol, 2009, 27(8): 1160-1167.

  4. HENG Y J, LESTER S C, TSE G M, et al. The molecular basis   of breast cancer pathological phenotypes[J]. J Pathol, 2017, 241(3): 375-391.

  5. ANGUS L, BEIJE N, JAGER A, et al. ESR1 mutations: moving towards guiding treatment decision-making in metastatic breast cancer patients[J]. Cancer Treat Rev, 2017, 52: 33-40.

  6. PATERNI I, GRANCHI C, KATZENELLENBOGEN J A, et al. Estrogen receptors alpha (ERα) and beta (ERβ): subtype- selective ligands and clinical potential[J]. Steroids, 2014, 90: 13-29.

  7. ANBALAGAN M, ROWAN B G. Estrogen receptor alpha phosphorylation and its functional impact in human breast cancer[J]. Mol Cell Endocrinol, 2015, 418(Pt 3): 264-272.

  8. JESELSOHN R, BUCHWALTER G, DE ANGELIS C, et al. ESR1 mutations-a mechanism for acquired endocrine resistance in breast cancer[J]. Nat Rev Clin Oncol, 2015, 12(10): 573- 583.

  9. NICOLINI A, FERRARI P, DUFFY M J. Prognostic and predictive biomarkers in breast cancer: past, present and future[J]. Semin Cancer Biol, 2018, 52(Pt 1): 56-73.

  10. CUZICK J, SESTAK I, BAUM M, et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial[J]. Lancet Oncol, 2010, 11(12): 1135-1141.

  11. NABHOLTZ J M, BUZDAR A, POLLAK M, et al. Anastrozole  is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial. Arimidex Study Group[J]. J Clin Oncol, 2000, 18(22): 3758-3767.

  12. D'SOUZA A, SPICER D, LU J. Overcoming endocrine resistance in metastatic hormone receptor-positive breast cancer[J]. J Hematol Oncol, 2018, 11(1): 80.

  13. ROZEBOOM B, DEY N, DE P. ER+ metastatic breast cancer: past, present, and a prescription for an apoptosis-targeted future[J]. Am J Cancer Res, 2019, 9(12): 2821-2831.

  14. DUSTIN D, GU G, FUQUA S. ESR1 mutations in breast cancer[J]. Cancer, 2019, 125(21): 3714-3728.

  15. TOY W, SHEN Y, WON H, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer[J]. Nat Genet, 2013, 45(12): 1439-1445.

  16. ZHU W, REN C, WANG Y, et al. Prevalence of ESR1 mutation in Chinese ER-positive breast cancer[J]. Onco Targets Ther, 2020, 13: 615-621.

  17. ZUNDELEVICH A, DADIANI M, KAHANA-EDWIN S, et al. ESR1 mutations are frequent in newly diagnosed metastatic and loco-regional recurrence of endocrine-treated breast cancer and carry worse prognosis[J]. Breast Cancer Res, 2020, 22(1): 16.

  18. JESELSOHN R, YELENSKY R, BUCHWALTER G, et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer[J]. Clin Cancer Res, 2014, 20(7): 1757-1767.

  19. FREITAG C E, MEI P, WEI L, et al. ESR1 genetic alterations and their association with clinicopathologic characteristics in advanced breast cancer: a single academic institution experience[J]. Hum Pathol, 2021, 107: 80-86.

  20. ZHANG K, HONG R, XU F, et al. Clinical value of circulating ESR1 mutations for patients with metastatic breast cancer: a meta-analysis[J]. Cancer Manag Res, 2018, 10: 2573-2580.

  21. FRIBBENS C, O'LEARY B, KILBURN L, et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer[J]. J Clin Oncol, 2016, 34(25): 2961-2968.

  22. TURNER N C, SWIFT C, KILBURN L, et al. ESR1 mutations and overall survival on fulvestrant versus exemestane in advanced hormone receptor-positive breast cancer: a combined analysis of the phase Ⅲ SoFEA and EFECT trials[J]. Clin Cancer Res, 2020, 26(19): 5172-5177.

  23. ZINGER L, MERENBAKH-LAMIN K, KLEIN A, et al. Ligand-binding domain-activating mutations of ESR1 rewire cellular metabolism of breast cancer cells[J]. Clin Cancer Res, 2019, 25(9): 2900-2914.

  24. ROBINSON D R, WU Y M, VATS P, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer[J]. Nat Genet, 2013, 45(12): 1446-1451.

  25. TOY W, WEIR H, RAZAVI P, et al. Activating ESR1 mutations differentially affect the efficacy of ER antagonists[J]. Cancer Discov, 2017, 7(3): 277-287.

  26. BASELGA J, CAMPONE M, PICCART M, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer[J]. N Engl J Med, 2012, 366(6): 520-529.

  27. MURPHY C G, DICKLER M N. Endocrine resistance in hormone-responsive breast cancer: mechanisms and therapeutic strategies[J]. Endocr Relat Cancer, 2016, 23(8): R337-R352.

  28. HUW L Y, O'BRIEN C, PANDITA A, et al. Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer[J]. Oncogenesis, 2013, 2: e83.

  29. HOLST F, STAHL P R, RUIZ C, et al. Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer[J].Nat Genet, 2007, 39(5): 655-660.

  30. Nat Genet, 2007, 39(5): 655-660. VINCENT-SALOMON A, RAYNAL V, LUCCHESI C, et al. ESR1 gene amplification in breast cancer: a common phenomenon?[J]. Nat Genet, 2008, 40(7): 809; author reply 810-812.

  31. LI S, SHEN D, SHAO J, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts[J]. Cell Rep, 2013, 4(6): 1116-1130.

  32. NIELSEN K V, EJLERTSEN B, MÜLLER S, et al. Amplification of ESR1 may predict resistance to adjuvant tamoxifen in postmenopausal patients with hormone receptor positive breast cancer[J]. Breast Cancer Res Treat, 2011, 127(2): 345-355.

  33. CONNOLLY R, STEARNS V. Epigenetics as a therapeutic target in breast cancer[J]. J Mammary Gland Biol Neoplasia, 2012, 17(3-4): 191-204.

  34. LEE J, BARTHOLOMEUSZ C, MANSOUR O, et al. A classⅠ histone deacetylase inhibitor, entinostat, enhances lapatinib efficacy in HER2-overexpressing breast cancer cells through FOXO3-mediated Bim1 expression[J]. Breast Cancer Re Treat, 2014, 146(2): 259-272.

  35. THOMAS S, THURN K T, BIÇAKU E, et al. Addition of a histone deacetylase inhibitor redirects tamoxifen-treated breast cancer cells into apoptosis, which is opposed by the induction of autophagy[J]. Breast Cancer Res Treat, 2011, 130(2): 437- 447.

  36. TRAPANI D, ESPOSITO A, CRISCITIELLO C, et al. Entinostat for the treatment of breast cancer[J]. Expert Opin Investig Drugs, 2017, 26(8): 965-971.

  37. SABNIS G J, GOLOUBEVA O, CHUMSRI S, et al. Functional activation of the estrogen receptor-α and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole[J]. Cancer Res, 2011, 71(5): 1893-1903.

  38. YARDLEY D A, ISMAIL-KHAN R R, MELICHAR B, et al. Randomized phase Ⅱ, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor[J]. J Clin Oncol, 2013, 31(17): 2128-2135.

  39. YERUVA S, ZHAO F, MILLER K D, et al. E2112: randomized phase Ⅲ trial of endocrine therapy plus entinostat/placebo in patients with hormone receptor-positive advanced breast cancer[J]. NPJ Breast Cancer, 2018, 4: 1.

  40. ZHANG Q, WANG T, GENG C, et al. Exploratory clinical study of chidamide, an oral subtype-selective histone deacetylase inhibitor, in combination with exemestane in hormone receptor-positive advanced breast cancer[J]. Chin J Cancer Res, 2018, 30(6): 605-612.

  41. JIANG Z, LI W, HU X, et al. Tucidinostat plus exemestane for postmenopausal   patients with advanced, hormone receptor-positive breast cancer (ACE): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2019, 20(6): 806-815.

  42. MA C X, REINERT T, CHMIELEWSKA I, et al. Mechanisms of aromatase inhibitor resistance[J]. Nat Rev Cancer, 2015,15(5): 261-275.

  43. LEARY A F, DRURY S, DETRE S, et al. Lapatinib restores hormone sensitivity with differential effects on estrogen receptor signaling in cell models of human epidermal growth factor receptor 2-negative breast cancer with acquired endocrine resistance[J]. Clin Cancer Res, 2010, 16(5): 1486-1497.

  44. BAYLISS J, HILGER A, VISHNU P, et al. Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response[J]. Clin Cancer Res, 2007, 13(23): 7029-7036.

  45. HUOBER J, FASCHING P A, BARSOUM M, et al. Higher efficacy of letrozole in combination with trastuzumab compared to letrozole monotherapy as first-line treatment in patients with HER2-positive, hormone-receptor-positive metastatic breast cancer-results of the eLEcTRA trial[J]. Breast, 2012, 21(1):27-33.

  46. PRESTI D, QUAQUARINI E. The PI3K/AKT/mTOR and CDK4/6 pathways in endocrine resistant HR+/HER2- metastatic breast cancer: biological mechanisms and new treatments[J].Cancers (Basel), 2019, 11(9): 1242.

  47. MARTÍNEZ-SÁEZ O, CHIC N, PASCUAL T, et al. Frequency and spectrum of PIK3CA somatic mutations in breast cancer[J]. Breast Cancer Res, 2020, 22(1): 45.

  48. RAPHAEL J, DESAUTELS D, PRITCHARD K I, et al. Phosphoinositide 3-kinase inhibitors in advanced breast cancer: a systematic review and meta-analysis[J]. Eur J Cancer, 2018, 91: 38-46.

  49. AOKI M, FUJISHITA T. Oncogenic roles of the PI3K/AKT/mTOR axis[J]. Curr Top Microbiol Immunol, 2017, 407:153-189.

  50. SANCHEZ C G, MA C X, CROWDER R J, et al. Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer[J]. Breast Cancer Res, 2011, 13(2): R21.

  51. MAIRA S M, PECCHI S, HUANG A, et al. Identification and characterization of NVP-BKM120, an orally available pan-classⅠ   PI3-kinase inhibitor[J]. Mol   Cancer Ther, 2012, 11(2): 317-328.

  52. BASELGA J, IM S A, IWATA H, et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2017, 18(7): 904-916.

  53. DI LEO A, JOHNSTON S, LEE K S, et al. Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2018,   19(1): 87-100.

  54. KROP I E, MAYER I A, GANJU V, et al. Pictilisib for oestrogen receptor-positive,  aromatase inhibitor-resistant,  advanced  or metastatic breast cancer (FERGI): a randomised, double-blind, placebo-controlled, phase 2 trial[J]. Lancet Oncol, 2016, 17(6): 811-821.

  55. DENT S, CORTÉS J, IM Y H, et al. Phase Ⅲ randomized study of taselisib or placebo with fulvestrant in estrogen receptor-positive, PIK3CA-mutant, HER2-negative, advanced breast cancer: the SANDPIPER trial[J]. Ann Oncol, 2021, 32(2): 197-207.

  56. ANDRÉ F, CIRUELOS E, RUBOVSZKY G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer[J]. N Engl J Med, 2019, 380(20): 1929-1940.

  57. DAVIES B R, GREENWOOD H, DUDLEY P, et al. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background[J]. Mol Cancer Ther,  2012, 11(4): 873-887.

  58. JONES R H, CASBARD A, CARUCCI M, et al. Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive breast cancer (FAKTION): a multicentre, randomised, controlled, phase 2 trial[J]. Lancet Oncol, 2020, 21(3): 345-357.

  59. YAMNIK R L, HOLZ M K. mTOR/S6K1 and MAPK/RSK signaling pathways coordinately regulate estrogen receptor alpha serine 167 phosphorylation[J]. FEBS Lett, 2010, 584(1):124-128.

  60. YAMNIK R L, DIGILOVA A, DAVIS D C, et al. S6 kinase 1 regulates estrogen receptor alpha in control of breast cancer cell proliferation[J]. J Biol Chem, 2009, 284(10): 6361-6369.

  61. HARE S H, HARVEY A J. mTOR function and therapeutic targeting in breast cancer[J]. Am J Cancer Res, 2017, 7(3): 383-404.

  62. BOULAY   A, RUDLOFF J, YE J, et al. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer[J]. Clin Cancer Res, 2005, 11(14):5319-5328.

  63. PICCART M, HORTOBAGYI G N, CAMPONE M, et al. Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLERO-2[J]. Ann Oncol, 2014, 25(12): 2357-2362.

  64. BACHELOT T, BOURGIER C, CROPET C, et al. Randomized phase Ⅱ trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study[J]. J Clin Oncol, 2012, 30(22): 2718-2724.

  65. KORNBLUM N, ZHAO F, MANOLA J, et al. Randomized phase Ⅱ trial of fulvestrant plus everolimus or placebo in postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer resistant to aromatase inhibitor therapy: results of PrE0102[J]. J Clin Oncol, 2018, 36(16): 1556-1563.

  66. SCHMID P, ZAISS M, HARPER-WYNNE C, et al. Fulvestrant plus vistusertib vs fulvestrant plus everolimus vs fulvestrant alone for women with hormone receptor-positive metastatic breast cancer: the MANTA phase 2 randomized clinical trial[J]. JAMA Oncol, 2019, 5(11): 1556-1563.

  67. INGHAM M, SCHWARTZ G K. Cell-cycle therapeutics come of age[J]. J Clin Oncol, 2017, 35(25): 2949-2959.

  68. XU H, YU S, LIU Q, et al. Recent advances of highly selective CDK4/6 inhibitors in breast cancer[J]. J Hematol Oncol, 2017,   10(1): 97.

  69. SPRING L M, WANDER S A, ZANGARDI M, et al. CDK4/6 inhibitors in breast cancer: current controversies and future directions[J]. Curr Oncol Rep, 2019, 21(3): 25.

  70. PORTMAN N, ALEXANDROU S, CARSON E, et al. Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer[J]. Endocr Relat Cancer, 2019, 26(1): R15-R30.

  71. TURNER N   C, RO J, ANDRÉ F, et al. Palbociclib in hormone-receptor-positive   advanced breast cancer[J]. N Engl J Med, 2015, 373(3): 209-219.

  72. ZHANG Q, SHAO Z, SHEN K, et al. Fulvestrant 500 mg vs 250 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer: a randomized, double-blind registrational trial in China[J]. Oncotarget, 2016, 7(35): 57301-57309.

  73. SLEDGE G W Jr, TOI M, NEVEN P, et al. MONARCH 2:abemaciclib in combination with fulvestrant in women with HR+/HER2-  advanced breast cancer who had progressed while receiving endocrine therapy[J]. J Clin Oncol, 2017, 35(25):2875-2884.

  74. FINN R S, MARTIN M, RUGO H S, et al. Palbociclib and letrozole in advanced breast cancer[J]. N Engl J Med, 2016, 375(20): 1925-1936.

  75. HORTOBAGYI G N, STEMMER S M, BURRIS H A, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer[J]. N Engl J Med, 2016, 375(18): 1738-1748.

  76. GOETZ M   P, TOI M, CAMPONE M, et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer[J]. J Clin Oncol, 2017, 35(32): 3638-3646.

  77. SLAMON D J, NEVEN P, CHIA S, et al. Phase Ⅲ randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3[J]. J Clin Oncol, 2018, 36(24): 2465-2472.

  78. LAI A C, CREWS C M. Induced protein degradation: an emerging drug discovery paradigm[J]. Nat Rev Drug Discov,2017, 16(2): 101-114.

  79. TURNER N C, SLAMON D J, RO J, et al. Overall survival with palbociclib and fulvestrant in advanced breast cancer[J]. N Engl J Med, 2018, 379(20): 1926-1936.

  80. HOLE S, PEDERSEN A M, HANSEN S K, et al. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane[J]. Int J Oncol, 2015, 46(4): 1481-1490.

  81. BIHANI T, PATEL H K, ARLT H, et al. Elacestrant (RAD1901), a selective estrogen receptor degrader (SERD), has antitumor activity in multiple ER+ breast cancer patient-derived xenograft models[J]. Clin Cancer Res, 2017, 23(16): 4793-4804.

  82. WARDELL S E, NELSON E R, CHAO C A, et al. Evaluation of the pharmacological activities of RAD1901, a selective estrogen receptor degrader[J]. Endocr Relat Cancer, 2015, 22(5): 713-724.

  83. BARDIA A, AFTIMOS P, BIHANI T, et al. EMERALD: phase Ⅲ trial of elacestrant (RAD1901) vs endocrine therapy for previously treated ER+ advanced breast cancer[J]. Future Oncol, 2019, 15(28): 3209-3218.

  84. LØNNING P E, BAJETTA E, MURRAY R, et al. Activity of exemestane in metastatic breast cancer after failure of nonsteroidal aromatase inhibitors: a phase Ⅱ trial[J]. J Clin Oncol, 2000, 18(11): 2234-2244.


本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
[SABCS 2015] 荟萃:晚期乳腺癌内分泌治疗进展
CDK4/6新型靶向药问世,这类乳腺癌有望成为慢性病!
重磅!礼来乳腺癌新药唯择®(阿贝西利片)在华获批!
胡夕春教授:乳腺癌内分泌治疗的原发和继发耐药的处理策略
乳腺癌内分泌治疗1 1时代:内分泌联合靶向精准克服耐药
【ASCO 2016】滕月娥教授:ESR1突变的乳腺癌患者的内分泌治疗
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服