打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
物理学之谜——量子系统和凝聚态物质的奇异行为

在过去的几十年中,凝聚态物理学和量子系统的奇异行为是物理学家所热衷研究的对象。物理学家专注于研究包含高度关联电子的材料(比如传统和新奇的超导体)、碳科学的性质(比如石墨烯、碳纳米管和富勒烯等)、新的光学和X-射线技术、能够应用在量子信息处理和量子密码学的技术等等。

1还有哪些超导和超流体的新形式等待被发现?

在低温下,像氦-4原子这样的玻色子会经历玻色-爱因斯坦凝聚成为超流体。同样的,费米子会形成配对,凝聚成超流体,如果费米子带电则会形成超导体。从氦-3的超流体相,到原子的玻色-爱因斯坦凝聚,再到中子星的中子,这些都是科学家热衷研究的超流体对象。另一方面,超导体的例子也有很多,比如有机超导体、重费米子化合物和高温超导体等等。高温超导体的超导电性机制以及其它特征都有待被阐明。基于这些年来这个领域的蓬勃发展,我们可以期待未来有更重大的发现在等待着我们。

铷原子形成玻色-爱因斯坦凝聚的过程。红色代表凝聚较少的区域,白色则代表非常密集的区域。

2有哪些新的拓扑相等待被发现?

继 Kosterlitz-Thouless 相变、以及整数和分数量子霍尔效应的发现后,拓扑绝缘体是近年来令人惊喜意外的发现。拓扑绝缘体是一种表面导电但内部绝缘的材料。目前,物理学家提出了许多与凝聚态物质系统中的其他拓扑非平凡相和物体有关的理论。

(注:David J. Thouless和Michael Kosterlitz因在拓扑相变和拓扑相研究领域做出了重要的理论发现,而被授予2016年的诺贝尔物理学奖。)

常见的物质相有气体、液体和固体(中间三个),在高温中则有等离子体(最上),而在低温状态下,物质会呈现出我们从未见过的相。最下面显示的是量子凝聚。

3物质还有哪些新的相和形式等待被发现?

普通物质的涌现性质已经显示出惊人的丰富性。在20世纪和21世纪初,许多奇特的相被发现:如不同形式的磁性、空间结构(如晶体和准晶、电荷密度波、自旋密度波等)、1维和2维材料、纳米结构、软物质(如液晶和聚合物)、以及颗粒体系。

现在,量子相变是一个热门的探索领域。包括普通材料中的电子液体在内的量子液体还没有被很好地理解,而任何液相的存在,都是物质的重大的涌现性质。

流体中的湍流仍是一个未解决的重大问题。更一般的非线性系统也可能潜藏着更多的惊喜,例如混沌和非平衡相变。

等离子体被描述为物质的第四种状态,在天体物理学和地球应用的许多领域中都极为重要。一个尚未实现的旧梦想是,如果在磁约束或惯性约束上有所突破,都将使受控聚变合成为无穷无尽的可用能量来源。

物理学家正试图对所有可能的物质的相进行分类。完整的分类有助于我们发现新的材料和技术。

4在高度关联的电子材料中,还有哪些性质等待被发现?

对于许多凝聚态物质系统来说,单电子(或准粒子)的图景运作的如此之好是一件相当奇妙的事。但是电子相关效应可能会导致一些新的现象,而上面提到的那些现象肯定不会就是所有可能性的全部。

5量子计算机、量子信息和其它基于量子纠缠的应用的未来是什么?

量子纠缠是指两个粒子之间可以保持一种特殊的连接,如果你测量了其中一个粒子的状态,你就粒子知道另一个粒子的状态,无论距离多远,爱因斯坦把这种可以超光速的作用称为“鬼魅般的超距作用”。量子纠缠是发展量子计算和量子信息的关键。举个例子,当有多个量子比特被纠缠的时候,对其中的一个量子比特的操作就会瞬时影响所有其它的量子比特,也就意味着着空前的并行运算能量。但是,由于纠缠态在真实环境中是十分脆弱的,所以目前最大的问题是这些领域的重要性是否能在现实环境中实现。纠缠在量子计算机的物理实现和黑洞信息悖论的解决等问题上越来越受到关注。

6量子光学和光子学的未来是什么?

光子、电子在基于光子学的新技术(包括光电子学)中起着重要的作用。该领域的前沿研究涉及到更短的激光脉宽、更高的强度、先前无法企及的波长辐射、量子现象的控制以及更多新兴思想的涌现。什么样的新现象会伴随光子、或光子与电子以及其他粒子一起被发现呢?

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
物理学家的深奥难题:物质新状态
拓扑学在物理学中的应用,揭示物质状态的最本质特征
物理学诺奖揭晓“拓扑相变”走红:开启了未知世界
认识光子本质还是物理学前沿的难题
最冷的,最凝聚
量子纠缠的具体机制131:《光的弦网液体理论》一一一对光的波粒二象性的一个启发性推广
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服