打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
<font style="vertical-align: inherit;"><font style="vertical-align: inherit;

熊猫对象中的轴标签信息有很多用途:

  • 使用已知的指标标识数据(即提供元数据),这对于分析,可视化和并行控制台显示很重要。

  • 启用自动和显式数据对齐。

  • 允许直观地获取和设置数据集的子集。

在本节中,我们将重点关注最后一点:即如何切片,切块,以及通常如何获取和设置熊猫对象的子集。主要重点将放置在Series和DataFrame上,因为它们在该领域受到了更多的开发关注。

注意

Python和NumPy索引运算符[]和属性运算符.可在各种用例中快速轻松地访问熊猫数据结构。这使相互工作变得直观,因为如果您已经知道如何处理Python字典和NumPy布局,则没有什么新的知识要学习。但是,由于先前不知道要访问的数据类型,因此直接使用标准运算符存在一些优化限制。对于生产代码,我们建议您利用本章中介绍的优化的熊猫数据访问方法。

警告

为设置操作返回副本还是参考,可能会有一部分。有时被称为,应该避免。请参见返回视图与复制chained assignment

多指标/高级索引MultiIndex和更先进的索引文件。

有关某些高级策略,请参阅本。食谱

不同的选择索引

对象选择具有多个用户请求的添加项,以支持更明确的基于位置的索引。熊猫现在支持三种类型的多轴索引。

  • .loc主要基于标签,但也可以与布尔薄片一起使用。找不到物品时.loc将升高KeyError允许的输入为:

    • 单个标签,例如5'a'(请注意,它5被解释为索引标签。此用法不是沿索引的整体位置。)

    • 标签列表或标签列表['a', 'b', 'c']

    • 带标签的切片对象'a':'f'(注意,相反普通的Python片,开始和停止都包括内部,当存在于索引中!见切片用标签两端都包括内部。)

    • 布尔码(任何NA值都将被视为False)。

    • 一个callable带有一个参数的函数(调用Series或DataFrame),并返回用于索引的有效输出(上述之一)。

    有关更多信息,请参见按标签选择

  • .iloc主要是整体位置(来自0length-1所述变量的),但也可以使用布尔数组使用。 如果请求的索引器超出边界,.iloc则将增加IndexError,但切片索引器除外,该索引允许越界索引。(这符合Python / NumPy slice语义)。允许的输入为:

    • 整体,例如5

    • 整体列表或摘要[4, 3, 0]

    • 具有int的slice对象1:7

    • 布尔码(任何NA值都将被视为False)。

    • 一个callable带有一个参数的函数(调用Series或DataFrame),并返回用于索引的有效输出(上述之一)。

    请参见“按位置选择”,“高级索引编制”和“高级层次结构”

  • .loc.iloc以及[]索引也可以接受callable作为索引器。有关更多信息,请参见“按呼叫选择”

从具有多轴选择的对象获取值使用以下表示法(.loc以示例为例,但以下内容也适用.iloc)。任何轴访问器都可以为空切片:轴冷落的规格被假定为:,例如p.loc['a']相当于p.loc['a', :, :]

对象类型

索引器

系列

s.loc[indexer]

数据框

df.loc[row_indexer,column_indexer]

基础

在正如上一节介绍数据结构时所提到的那样,使用进行索引[]__getitem__对于熟悉的Python中实现类行为的人们来说)的主要功能的英文选择低维切片。下表显示了使用索引大熊猫对象时的返回类型值[]

对象类型

选拔

返回值类型

系列

series[label]

标量值

数据框

frame[colname]

Series 对应于姓

在这里,我们构造了一个简单的时间序列数据集,用于说明索引功能:

在[1]中:date  =  pd date_range '1/1/2000'  期间= 8 在[2]中:df  =  pd 数据帧NP 随机randn 8  4 ),   ...:                  指数=日期 = [ 'A'  'B'  'C'  'd' ])   ...:输入[3]:df输出[3]:                   ABCD 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 2000-01 -04 0.721555 -0.706771 -1.039575 0.271860 2000-01-05 -0.424972 0.567020 0.276232 -1.087401 2000-01-06 -0.673690 0.113648 -1.478427 0.524988 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885

注意

除非特别说明,否则所有索引功能都不是特定于时间序列的。

因此,预期,我们使用的是最基本的索引[]

在[4]中:s  =  df [ 'A' ]输入[5]:s [日期[ 5 ]]输出[5]:- 0.6736897080883706

您可以将列列表传递[]给以按按顺序选择列。如果DataFrame中不包含列,则将引发异常。也可以以这种方式设置多列:

输入[6]:df输出[6]:                   ABCD 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 2000-01 -04 0.721555 -0.706771 -1.039575 0.271860 2000-01-05 -0.424972 0.567020 0.276232 -1.087401 2000-01-06 -0.673690 0.113648 -1.478427 0.524988 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885在[7]中:df [[ 'B'  'A' ]]  =  df [[ 'A'  'B' ]]输入[8]:df输出[8]:                   ABCD 2000-01-01 -0.282863 0.469112 -1.509059 -1.135632 2000-01-02 -0.173215 1.212112 0.119209 -1.044236 2000-01-03 -2.104569 -0.861849 -0.494929 1.071804 2000-01 -04 -0.706771 0.721555 -1.039575 0.271860 2000-01-05 0.567020 -0.424972 0.276232 -1.087401 2000-01-06 0.113648 -0.673690 -1.478427 0.524988 2000-01-07 0.577046 0.404705 -1.715002 -1.039268 2000-01-08 -1.157892 -0.370647 -1.344312 0.844885

您可能会发现这对于将转换(就地)重组列的子集很有用。

警告

设置SeriesDataFrame.loc和中时,pandas会对齐所有轴.iloc

不会修改,df因为列对齐是在值分配之前。

In [9]: df[['A', 'B']]Out[9]:                    A         B2000-01-01 -0.282863  0.4691122000-01-02 -0.173215  1.2121122000-01-03 -2.104569 -0.8618492000-01-04 -0.706771  0.7215552000-01-05  0.567020 -0.4249722000-01-06  0.113648 -0.6736902000-01-07  0.577046  0.4047052000-01-08 -1.157892 -0.370647In [10]: df.loc[:, ['B', 'A']] = df[['A', 'B']]In [11]: df[['A', 'B']]Out[11]:                    A         B2000-01-01 -0.282863  0.4691122000-01-02 -0.173215  1.2121122000-01-03 -2.104569 -0.8618492000-01-04 -0.706771  0.7215552000-01-05  0.567020 -0.4249722000-01-06  0.113648 -0.6736902000-01-07  0.577046  0.4047052000-01-08 -1.157892 -0.370647

交换列值的正确方法是使用原始值:

In [12]: df.loc[:, ['B', 'A']] = df[['A', 'B']].to_numpy()In [13]: df[['A', 'B']]Out[13]:                    A         B2000-01-01  0.469112 -0.2828632000-01-02  1.212112 -0.1732152000-01-03 -0.861849 -2.1045692000-01-04  0.721555 -0.7067712000-01-05 -0.424972  0.5670202000-01-06 -0.673690  0.1136482000-01-07  0.404705  0.5770462000-01-08 -0.370647 -1.157892

属性访问

您可以直接Series或上的索引DataFrame作为属性访问:

In [14]: sa = pd.Series([1, 2, 3], index=list('abc'))In [15]: dfa = df.copy()
In [16]: sa.bOut[16]: 2In [17]: dfa.AOut[17]: 2000-01-01    0.4691122000-01-02    1.2121122000-01-03   -0.8618492000-01-04    0.7215552000-01-05   -0.4249722000-01-06   -0.6736902000-01-07    0.4047052000-01-08   -0.370647Freq: D, Name: A, dtype: float64
In [18]: sa.a = 5In [19]: saOut[19]: a    5b    2c    3dtype: int64In [20]: dfa.A = list(range(len(dfa.index)))  # ok if A already existsIn [21]: dfaOut[21]:             A         B         C         D2000-01-01  0 -0.282863 -1.509059 -1.1356322000-01-02  1 -0.173215  0.119209 -1.0442362000-01-03  2 -2.104569 -0.494929  1.0718042000-01-04  3 -0.706771 -1.039575  0.2718602000-01-05  4  0.567020  0.276232 -1.0874012000-01-06  5  0.113648 -1.478427  0.5249882000-01-07  6  0.577046 -1.715002 -1.0392682000-01-08  7 -1.157892 -1.344312  0.844885In [22]: dfa['A'] = list(range(len(dfa.index)))  # use this form to create a new columnIn [23]: dfaOut[23]:             A         B         C         D2000-01-01  0 -0.282863 -1.509059 -1.1356322000-01-02  1 -0.173215  0.119209 -1.0442362000-01-03  2 -2.104569 -0.494929  1.0718042000-01-04  3 -0.706771 -1.039575  0.2718602000-01-05  4  0.567020  0.276232 -1.0874012000-01-06  5  0.113648 -1.478427  0.5249882000-01-07  6  0.577046 -1.715002 -1.0392682000-01-08  7 -1.157892 -1.344312  0.844885

警告

  • 仅当index元素是有效的Python标识符(例如s.1,不允许使用)时,才能使用此访问权限有关有效标识符的说明,请参见此处

  • 如果该属性与现有方法名称冲突(例如s.min,不允许但可以),s['min']该属性将不可用

  • 同样,该属性将不可用,如果它与下列任何名单的冲突:indexmajor_axisminor_axisitems

  • 在任何一种情况下,标准索引仍然可以工作,例如s['1']s['min']s['index']将访问相应的元素或列。

如果使用的是IPython环境,则也可以使用制表符补全来查看这些可访问的属性。

您还可以将分配dict给的一行DataFrame

In [24]: x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]})In [25]: x.iloc[1] = {'x': 9, 'y': 99}In [26]: xOut[26]:    x   y0  1   31  9  992  3   5

您可以使用属性访问来修改Series或DataFrame列的现有元素,但要小心;如果您尝试使用属性访问来创建新列,则它将创建一个新属性而不是一个新列。在0.21.0及更高版本中,这将引发UserWarning

In [1]: df = pd.DataFrame({'one': [1., 2., 3.]})In [2]: df.two = [4, 5, 6]UserWarning: Pandas doesn't allow Series to be assigned into nonexistent columns - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute_accessIn [3]: dfOut[3]:   one0  1.01  2.02  3.0

切片范围

在“按位置选择”部分详细介绍了该.iloc方法,介绍了沿任意轴切片范围的最可靠,最一致方法。现在,我们解释使用[]运算符进行切片的语义

使用Series时,语法与ndarray完全一样,返回值的一部分和相应的标签:

In [27]: s[:5]Out[27]: 2000-01-01    0.4691122000-01-02    1.2121122000-01-03   -0.8618492000-01-04    0.7215552000-01-05   -0.424972Freq: D, Name: A, dtype: float64In [28]: s[::2]Out[28]: 2000-01-01    0.4691122000-01-03   -0.8618492000-01-05   -0.4249722000-01-07    0.404705Freq: 2D, Name: A, dtype: float64In [29]: s[::-1]Out[29]: 2000-01-08   -0.3706472000-01-07    0.4047052000-01-06   -0.6736902000-01-05   -0.4249722000-01-04    0.7215552000-01-03   -0.8618492000-01-02    1.2121122000-01-01    0.469112Freq: -1D, Name: A, dtype: float64

请注意,设置同样适用:

In [30]: s2 = s.copy()In [31]: s2[:5] = 0In [32]: s2Out[32]: 2000-01-01    0.0000002000-01-02    0.0000002000-01-03    0.0000002000-01-04    0.0000002000-01-05    0.0000002000-01-06   -0.6736902000-01-07    0.4047052000-01-08   -0.370647Freq: D, Name: A, dtype: float64

使用DataFrame时,[] 在rows中切片进行切片由于这是一种常见的操作,因此很大程度上是为了方便而提供。

In [33]: df[:3]Out[33]:                    A         B         C         D2000-01-01  0.469112 -0.282863 -1.509059 -1.1356322000-01-02  1.212112 -0.173215  0.119209 -1.0442362000-01-03 -0.861849 -2.104569 -0.494929  1.071804In [34]: df[::-1]Out[34]:                    A         B         C         D2000-01-08 -0.370647 -1.157892 -1.344312  0.8448852000-01-07  0.404705  0.577046 -1.715002 -1.0392682000-01-06 -0.673690  0.113648 -1.478427  0.5249882000-01-05 -0.424972  0.567020  0.276232 -1.0874012000-01-04  0.721555 -0.706771 -1.039575  0.2718602000-01-03 -0.861849 -2.104569 -0.494929  1.0718042000-01-02  1.212112 -0.173215  0.119209 -1.0442362000-01-01  0.469112 -0.282863 -1.509059 -1.135632

通过标签选择

警告

为设置操作返回副本还是参考,可能取决于上下文。这有时被称为,应该避免。请参阅返回视图与复制chained assignment

警告

.loc当您提供与索引类型不兼容(或可转换)的切片器时,它是严格的。例如在中使用整数DatetimeIndex这些将引发一个TypeError

In [35]: dfl = pd.DataFrame(np.random.randn(5, 4),   ....:                    columns=list('ABCD'),   ....:                    index=pd.date_range('20130101', periods=5))   ....: In [36]: dflOut[36]:                    A         B         C         D2013-01-01  1.075770 -0.109050  1.643563 -1.4693882013-01-02  0.357021 -0.674600 -1.776904 -0.9689142013-01-03 -1.294524  0.413738  0.276662 -0.4720352013-01-04 -0.013960 -0.362543 -0.006154 -0.9230612013-01-05  0.895717  0.805244 -1.206412  2.565646
In [4]: dfl.loc[2:3]TypeError: cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'> with these indexers [2] of <type 'int'>

切片中的字符串喜欢可以转换为索引的类型并导致自然切片。

In [37]: dfl.loc['20130102':'20130104']Out[37]:                    A         B         C         D2013-01-02  0.357021 -0.674600 -1.776904 -0.9689142013-01-03 -1.294524  0.413738  0.276662 -0.4720352013-01-04 -0.013960 -0.362543 -0.006154 -0.923061

警告

Starting in 0.21.0, pandas will show a FutureWarning if indexing with a list with missing labels. In the futurethis will raise a KeyError. See list-like Using loc with missing keys in a list is Deprecated.

pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based protocol.Every label asked for must be in the index, or a KeyError will be raised.When slicing, both the start bound AND the stop bound are included, if present in the index.Integers are valid labels, but they refer to the label and not the position.

The .loc attribute is the primary access method. The following are valid inputs:

  • A single label, e.g. 5 or 'a' (Note that 5 is interpreted as a label of the index. This use is not an integer position along the index.).

  • A list or array of labels ['a', 'b', 'c'].

  • A slice object with labels 'a':'f' (Note that contrary to usual pythonslices, both the start and the stop are included, when present in theindex! See Slicing with labels.

  • A boolean array.

  • A callable, see Selection By Callable.

In [38]: s1 = pd.Series(np.random.randn(6), index=list('abcdef'))In [39]: s1Out[39]: a    1.431256b    1.340309c   -1.170299d   -0.226169e    0.410835f    0.813850dtype: float64In [40]: s1.loc['c':]Out[40]: c   -1.170299d   -0.226169e    0.410835f    0.813850dtype: float64In [41]: s1.loc['b']Out[41]: 1.3403088497993827

Note that setting works as well:

In [42]: s1.loc['c':] = 0In [43]: s1Out[43]: a    1.431256b    1.340309c    0.000000d    0.000000e    0.000000f    0.000000dtype: float64

With a DataFrame:

In [44]: df1 = pd.DataFrame(np.random.randn(6, 4),   ....:                    index=list('abcdef'),   ....:                    columns=list('ABCD'))   ....: In [45]: df1Out[45]:           A         B         C         Da  0.132003 -0.827317 -0.076467 -1.187678b  1.130127 -1.436737 -1.413681  1.607920c  1.024180  0.569605  0.875906 -2.211372d  0.974466 -2.006747 -0.410001 -0.078638e  0.545952 -1.219217 -1.226825  0.769804f -1.281247 -0.727707 -0.121306 -0.097883In [46]: df1.loc[['a', 'b', 'd'], :]Out[46]:           A         B         C         Da  0.132003 -0.827317 -0.076467 -1.187678b  1.130127 -1.436737 -1.413681  1.607920d  0.974466 -2.006747 -0.410001 -0.078638

Accessing via label slices:

In [47]: df1.loc['d':, 'A':'C']Out[47]:           A         B         Cd  0.974466 -2.006747 -0.410001e  0.545952 -1.219217 -1.226825f -1.281247 -0.727707 -0.121306

For getting a cross section using a label (equivalent to df.xs('a')):

In [48]: df1.loc['a']Out[48]: A    0.132003B   -0.827317C   -0.076467D   -1.187678Name: a, dtype: float64

For getting values with a boolean array:

In [49]: df1.loc['a'] > 0Out[49]: A     TrueB    FalseC    FalseD    FalseName: a, dtype: boolIn [50]: df1.loc[:, df1.loc['a'] > 0]Out[50]:           Aa  0.132003b  1.130127c  1.024180d  0.974466e  0.545952f -1.281247

NA values in a boolean array propagate as False:

Changed in version 1.0.2: mask = pd.array([True, False, True, False, pd.NA, False], dtype=”boolean”)maskdf1[mask]

For getting a value explicitly:

# this is also equivalent to ``df1.at['a','A']``In [51]: df1.loc['a', 'A']Out[51]: 0.13200317033032932

Slicing with labels¶

When using .loc with slices, if both the start and the stop labels arepresent in the index, then elements located between the two (including them)are returned:

In [52]: s = pd.Series(list('abcde'), index=[0, 3, 2, 5, 4])In [53]: s.loc[3:5]Out[53]: 3    b2    c5    ddtype: object

If at least one of the two is absent, but the index is sorted, and can becompared against start and stop labels, then slicing will still work asexpected, by selecting labels which rank between the two:

In [54]: s.sort_index()Out[54]: 0    a2    c3    b4    e5    ddtype: objectIn [55]: s.sort_index().loc[1:6]Out[55]: 2    c3    b4    e5    ddtype: object

However, if at least one of the two is absent and the index is not sorted, anerror will be raised (since doing otherwise would be computationally expensive,as well as potentially ambiguous for mixed type indexes). For instance, in theabove example, s.loc[1:6] would raise KeyError.

For the rationale behind this behavior, seeEndpoints are inclusive.

Selection by position¶

Warning

Whether a copy or a reference is returned for a setting operation, may depend on the context.This is sometimes called chained assignment and should be avoided.See Returning a View versus Copy.

Pandas provides a suite of methods in order to get purely integer based indexing. The semantics follow closely Python and NumPy slicing. These are 0-based indexing. When slicing, the start bound is included, while the upper bound is excluded. Trying to use a non-integer, even a valid label will raise an IndexError.

The .iloc attribute is the primary access method. The following are valid inputs:

  • An integer e.g. 5.

  • A list or array of integers [4, 3, 0].

  • A slice object with ints 1:7.

  • A boolean array.

  • A callable, see Selection By Callable.

In [56]: s1 = pd.Series(np.random.randn(5), index=list(range(0, 10, 2)))In [57]: s1Out[57]: 0    0.6957752    0.3417344    0.9597266   -1.1103368   -0.619976dtype: float64In [58]: s1.iloc[:3]Out[58]: 0    0.6957752    0.3417344    0.959726dtype: float64In [59]: s1.iloc[3]Out[59]: -1.110336102891167

Note that setting works as well:

In [60]: s1.iloc[:3] = 0In [61]: s1Out[61]: 0    0.0000002    0.0000004    0.0000006   -1.1103368   -0.619976dtype: float64

With a DataFrame:

In [62]: df1 = pd.DataFrame(np.random.randn(6, 4),   ....:                    index=list(range(0, 12, 2)),   ....:                    columns=list(range(0, 8, 2)))   ....: In [63]: df1Out[63]:            0         2         4         60   0.149748 -0.732339  0.687738  0.1764442   0.403310 -0.154951  0.301624 -2.1798614  -1.369849 -0.954208  1.462696 -1.7431616  -0.826591 -0.345352  1.314232  0.6905798   0.995761  2.396780  0.014871  3.35742710 -0.317441 -1.236269  0.896171 -0.487602

Select via integer slicing:

In [64]: df1.iloc[:3]Out[64]:           0         2         4         60  0.149748 -0.732339  0.687738  0.1764442  0.403310 -0.154951  0.301624 -2.1798614 -1.369849 -0.954208  1.462696 -1.743161In [65]: df1.iloc[1:5, 2:4]Out[65]:           4         62  0.301624 -2.1798614  1.462696 -1.7431616  1.314232  0.6905798  0.014871  3.357427

Select via integer list:

In [66]: df1.iloc[[1, 3, 5], [1, 3]]Out[66]:            2         62  -0.154951 -2.1798616  -0.345352  0.69057910 -1.236269 -0.487602
In [67]: df1.iloc[1:3, :]Out[67]:           0         2         4         62  0.403310 -0.154951  0.301624 -2.1798614 -1.369849 -0.954208  1.462696 -1.743161
In [68]: df1.iloc[:, 1:3]Out[68]:            2         40  -0.732339  0.6877382  -0.154951  0.3016244  -0.954208  1.4626966  -0.345352  1.3142328   2.396780  0.01487110 -1.236269  0.896171
# this is also equivalent to ``df1.iat[1,1]``In [69]: df1.iloc[1, 1]Out[69]: -0.1549507744249032

For getting a cross section using an integer position (equiv to df.xs(1)):

In [70]: df1.iloc[1]Out[70]: 0    0.4033102   -0.1549514    0.3016246   -2.179861Name: 2, dtype: float64

Out of range slice indexes are handled gracefully just as in Python/Numpy.

# these are allowed in python/numpy.In [71]: x = list('abcdef')In [72]: xOut[72]: ['a', 'b', 'c', 'd', 'e', 'f']In [73]: x[4:10]Out[73]: ['e', 'f']In [74]: x[8:10]Out[74]: []In [75]: s = pd.Series(x)In [76]: sOut[76]: 0    a1    b2    c3    d4    e5    fdtype: objectIn [77]: s.iloc[4:10]Out[77]: 4    e5    fdtype: objectIn [78]: s.iloc[8:10]Out[78]: Series([], dtype: object)

Note that using slices that go out of bounds can result inan empty axis (e.g. an empty DataFrame being returned).

In [79]: dfl = pd.DataFrame(np.random.randn(5, 2), columns=list('AB'))In [80]: dflOut[80]:           A         B0 -0.082240 -2.1829371  0.380396  0.0848442  0.432390  1.5199703 -0.493662  0.6001784  0.274230  0.132885In [81]: dfl.iloc[:, 2:3]Out[81]: Empty DataFrameColumns: []Index: [0, 1, 2, 3, 4]In [82]: dfl.iloc[:, 1:3]Out[82]:           B0 -2.1829371  0.0848442  1.5199703  0.6001784  0.132885In [83]: dfl.iloc[4:6]Out[83]:          A         B4  0.27423  0.132885

A single indexer that is out of bounds will raise an IndexError.A list of indexers where any element is out of bounds will raise anIndexError.

>>> dfl.iloc[[4, 5, 6]]IndexError: positional indexers are out-of-bounds>>> dfl.iloc[:, 4]IndexError: single positional indexer is out-of-bounds

Selection by callable¶

.loc, .iloc, and also [] indexing can accept a callable as indexer.The callable must be a function with one argument (the calling Series or DataFrame) that returns valid output for indexing.

In [84]: df1 = pd.DataFrame(np.random.randn(6, 4),   ....:                    index=list('abcdef'),   ....:                    columns=list('ABCD'))   ....: In [85]: df1Out[85]:           A         B         C         Da -0.023688  2.410179  1.450520  0.206053b -0.251905 -2.213588  1.063327  1.266143c  0.299368 -0.863838  0.408204 -1.048089d -0.025747 -0.988387  0.094055  1.262731e  1.289997  0.082423 -0.055758  0.536580f -0.489682  0.369374 -0.034571 -2.484478In [86]: df1.loc[lambda df: df['A'] > 0, :]Out[86]:           A         B         C         Dc  0.299368 -0.863838  0.408204 -1.048089e  1.289997  0.082423 -0.055758  0.536580In [87]: df1.loc[:, lambda df: ['A', 'B']]Out[87]:           A         Ba -0.023688  2.410179b -0.251905 -2.213588c  0.299368 -0.863838d -0.025747 -0.988387e  1.289997  0.082423f -0.489682  0.369374In [88]: df1.iloc[:, lambda df: [0, 1]]Out[88]:           A         Ba -0.023688  2.410179b -0.251905 -2.213588c  0.299368 -0.863838d -0.025747 -0.988387e  1.289997  0.082423f -0.489682  0.369374In [89]: df1[lambda df: df.columns[0]]Out[89]: a   -0.023688b   -0.251905c    0.299368d   -0.025747e    1.289997f   -0.489682Name: A, dtype: float64

You can use callable indexing in Series.

In [90]: df1['A'].loc[lambda s: s > 0]Out[90]: c    0.299368e    1.289997Name: A, dtype: float64

Using these methods / indexers, you can chain data selection operationswithout using a temporary variable.

In [91]: bb = pd.read_csv('data/baseball.csv', index_col='id')In [92]: (bb.groupby(['year', 'team']).sum()   ....:    .loc[lambda df: df['r'] > 100])   ....: Out[92]:            stint    g    ab    r    h  X2b  X3b  hr    rbi    sb   cs   bb     so   ibb   hbp    sh    sf  gidpyear team                                                                                                      2007 CIN       6  379   745  101  203   35    2  36  125.0  10.0  1.0  105  127.0  14.0   1.0   1.0  15.0  18.0     DET       5  301  1062  162  283   54    4  37  144.0  24.0  7.0   97  176.0   3.0  10.0   4.0   8.0  28.0     HOU       4  311   926  109  218   47    6  14   77.0  10.0  4.0   60  212.0   3.0   9.0  16.0   6.0  17.0     LAN      11  413  1021  153  293   61    3  36  154.0   7.0  5.0  114  141.0   8.0   9.0   3.0   8.0  29.0     NYN      13  622  1854  240  509  101    3  61  243.0  22.0  4.0  174  310.0  24.0  23.0  18.0  15.0  48.0     SFN       5  482  1305  198  337   67    6  40  171.0  26.0  7.0  235  188.0  51.0   8.0  16.0   6.0  41.0     TEX       2  198   729  115  200   40    4  28  115.0  21.0  4.0   73  140.0   4.0   5.0   2.0   8.0  16.0     TOR       4  459  1408  187  378   96    2  58  223.0   4.0  2.0  190  265.0  16.0  12.0   4.0  16.0  38.0

IX indexer is deprecated¶

Warning

Starting in 0.20.0, the .ix indexer is deprecated, in favor of the more strict .ilocand .loc indexers.

.ix offers a lot of magic on the inference of what the user wants to do. To wit, .ix can decideto index positionally OR via labels depending on the data type of the index. This has caused quite abit of user confusion over the years.

The recommended methods of indexing are:

  • .loc if you want to label index.

  • .iloc if you want to positionally index.

In [93]: dfd = pd.DataFrame({'A': [1, 2, 3],   ....:                     'B': [4, 5, 6]},   ....:                    index=list('abc'))   ....: In [94]: dfdOut[94]:    A  Ba  1  4b  2  5c  3  6

Previous behavior, where you wish to get the 0th and the 2nd elements from the index in the ‘A’ column.

In [3]: dfd.ix[[0, 2], 'A']Out[3]:a    1c    3Name: A, dtype: int64

Using .loc. Here we will select the appropriate indexes from the index, then use label indexing.

In [95]: dfd.loc[dfd.index[[0, 2]], 'A']Out[95]: a    1c    3Name: A, dtype: int64

This can also be expressed using .iloc, by explicitly getting locations on the indexers, and usingpositional indexing to select things.

In [96]: dfd.iloc[[0, 2], dfd.columns.get_loc('A')]Out[96]: a    1c    3Name: A, dtype: int64

For getting multiple indexers, using .get_indexer:

In [97]: dfd.iloc[[0, 2], dfd.columns.get_indexer(['A', 'B'])]Out[97]:    A  Ba  1  4c  3  6

Indexing with list with missing labels is deprecated¶

Warning

Starting in 0.21.0, using .loc or [] with a list with one or more missing labels, is deprecated, in favor of .reindex.

In prior versions, using .loc[list-of-labels] would work as long as at least 1 of the keys was found (otherwise itwould raise a KeyError). This behavior is deprecated and will show a warning message pointing to this section. Therecommended alternative is to use .reindex().

For example.

In [98]: s = pd.Series([1, 2, 3])In [99]: sOut[99]: 0    11    22    3dtype: int64

Selection with all keys found is unchanged.

In [100]: s.loc[[1, 2]]Out[100]: 1    22    3dtype: int64

Previous behavior

In [4]: s.loc[[1, 2, 3]]Out[4]:1    2.02    3.03    NaNdtype: float64

Current behavior

In [4]: s.loc[[1, 2, 3]]Passing list-likes to .loc with any non-matching elements will raiseKeyError in the future, you can use .reindex() as an alternative.See the documentation here:https://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlikeOut[4]:1    2.02    3.03    NaNdtype: float64

Reindexing¶

The idiomatic way to achieve selecting potentially not-found elements is via .reindex(). See also the section on reindexing.

In [101]: s.reindex([1, 2, 3])Out[101]: 1    2.02    3.03    NaNdtype: float64

Alternatively, if you want to select only valid keys, the following is idiomatic and efficient; it is guaranteed to preserve the dtype of the selection.

In [102]: labels = [1, 2, 3]In [103]: s.loc[s.index.intersection(labels)]Out[103]: 1    22    3dtype: int64

Having a duplicated index will raise for a .reindex():

In [104]: s = pd.Series(np.arange(4), index=['a', 'a', 'b', 'c'])In [105]: labels = ['c', 'd']
In [17]: s.reindex(labels)ValueError: cannot reindex from a duplicate axis

Generally, you can intersect the desired labels with the currentaxis, and then reindex.

In [106]: s.loc[s.index.intersection(labels)].reindex(labels)Out[106]: c    3.0d    NaNdtype: float64

However, this would still raise if your resulting index is duplicated.

In [41]: labels = ['a', 'd']In [42]: s.loc[s.index.intersection(labels)].reindex(labels)ValueError: cannot reindex from a duplicate axis

Selecting random samples¶

A random selection of rows or columns from a Series or DataFrame with the sample() method. The method will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows.

In [107]: s = pd.Series([0, 1, 2, 3, 4, 5])# When no arguments are passed, returns 1 row.In [108]: s.sample()Out[108]: 4    4dtype: int64# One may specify either a number of rows:In [109]: s.sample(n=3)Out[109]: 0    04    41    1dtype: int64# Or a fraction of the rows:In [110]: s.sample(frac=0.5)Out[110]: 5    53    31    1dtype: int64

By default, sample will return each row at most once, but one can also sample with replacementusing the replace option:

In [111]: s = pd.Series([0, 1, 2, 3, 4, 5])# Without replacement (default):In [112]: s.sample(n=6, replace=False)Out[112]: 0    01    15    53    32    24    4dtype: int64# With replacement:In [113]: s.sample(n=6, replace=True)Out[113]: 0    04    43    32    24    44    4dtype: int64

By default, each row has an equal probability of being selected, but if you want rowsto have different probabilities, you can pass the sample function sampling weights asweights. These weights can be a list, a NumPy array, or a Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights by the sum of the weights. For example:

In [114]: s = pd.Series([0, 1, 2, 3, 4, 5])In [115]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]In [116]: s.sample(n=3, weights=example_weights)Out[116]: 5    54    43    3dtype: int64# Weights will be re-normalized automaticallyIn [117]: example_weights2 = [0.5, 0, 0, 0, 0, 0]In [118]: s.sample(n=1, weights=example_weights2)Out[118]: 0    0dtype: int64

When applied to a DataFrame, you can use a column of the DataFrame as sampling weights(provided you are sampling rows and not columns) by simply passing the name of the columnas a string.

In [119]: df2 = pd.DataFrame({'col1': [9, 8, 7, 6],   .....:                     'weight_column': [0.5, 0.4, 0.1, 0]})   .....: In [120]: df2.sample(n=3, weights='weight_column')Out[120]:    col1  weight_column1     8            0.40     9            0.52     7            0.1

sample also allows users to sample columns instead of rows using the axis argument.

In [121]: df3 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]})In [122]: df3.sample(n=1, axis=1)Out[122]:    col10     11     22     3

Finally, one can also set a seed for sample’s random number generator using the random_state argument, which will accept either an integer (as a seed) or a NumPy RandomState object.

In [123]: df4 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]})# With a given seed, the sample will always draw the same rows.In [124]: df4.sample(n=2, random_state=2)Out[124]:    col1  col22     3     41     2     3In [125]: df4.sample(n=2, random_state=2)Out[125]:    col1  col22     3     41     2     3

Setting with enlargement¶

The .loc/[] operations can perform enlargement when setting a non-existent key for that axis.

In the Series case this is effectively an appending operation.

In [126]: se = pd.Series([1, 2, 3])In [127]: seOut[127]: 0    11    22    3dtype: int64In [128]: se[5] = 5.In [129]: seOut[129]: 0    1.01    2.02    3.05    5.0dtype: float64

A DataFrame can be enlarged on either axis via .loc.

In [130]: dfi = pd.DataFrame(np.arange(6).reshape(3, 2),   .....:                    columns=['A', 'B'])   .....: In [131]: dfiOut[131]:    A  B0  0  11  2  32  4  5In [132]: dfi.loc[:, 'C'] = dfi.loc[:, 'A']In [133]: dfiOut[133]:    A  B  C0  0  1  01  2  3  22  4  5  4

This is like an append operation on the DataFrame.

In [134]: dfi.loc[3] = 5In [135]: dfiOut[135]:    A  B  C0  0  1  01  2  3  22  4  5  43  5  5  5

Fast scalar value getting and setting¶

Since indexing with [] must handle a lot of cases (single-label access,slicing, boolean indexing, etc.), it has a bit of overhead in order to figureout what you’re asking for. If you only want to access a scalar value, thefastest way is to use the at and iat methods, which are implemented onall of the data structures.

Similarly to loc, at provides label based scalar lookups, while, iat provides integer based lookups analogously to iloc

In [136]: s.iat[5]Out[136]: 5In [137]: df.at[dates[5], 'A']Out[137]: -0.6736897080883706In [138]: df.iat[3, 0]Out[138]: 0.7215551622443669

You can also set using these same indexers.

In [139]: df.at[dates[5], 'E'] = 7In [140]: df.iat[3, 0] = 7

at may enlarge the object in-place as above if the indexer is missing.

In [141]: df.at[dates[-1] + pd.Timedelta('1 day'), 0] = 7In [142]: dfOut[142]:                    A         B         C         D    E    02000-01-01  0.469112 -0.282863 -1.509059 -1.135632  NaN  NaN2000-01-02  1.212112 -0.173215  0.119209 -1.044236  NaN  NaN2000-01-03 -0.861849 -2.104569 -0.494929  1.071804  NaN  NaN2000-01-04  7.000000 -0.706771 -1.039575  0.271860  NaN  NaN2000-01-05 -0.424972  0.567020  0.276232 -1.087401  NaN  NaN2000-01-06 -0.673690  0.113648 -1.478427  0.524988  7.0  NaN2000-01-07  0.404705  0.577046 -1.715002 -1.039268  NaN  NaN2000-01-08 -0.370647 -1.157892 -1.344312  0.844885  NaN  NaN2000-01-09       NaN       NaN       NaN       NaN  NaN  7.0

Boolean indexing¶

Another common operation is the use of boolean vectors to filter the data.The operators are: | for or, & for and, and ~ for not.These must be grouped by using parentheses, since by default Python willevaluate an expression such as df['A'] > 2 & df['B'] < 3 asdf['A'] > (2 & df['B']) < 3, while the desired evaluation order is(df['A'] > 2) & (df['B'] < 3).

Using a boolean vector to index a Series works exactly as in a NumPy ndarray:

In [143]: s = pd.Series(range(-3, 4))In [144]: sOut[144]: 0   -31   -22   -13    04    15    26    3dtype: int64In [145]: s[s > 0]Out[145]: 4    15    26    3dtype: int64In [146]: s[(s < -1) | (s > 0.5)]Out[146]: 0   -31   -24    15    26    3dtype: int64In [147]: s[~(s < 0)]Out[147]: 3    04    15    26    3dtype: int64

You may select rows from a DataFrame using a boolean vector the same length asthe DataFrame’s index (for example, something derived from one of the columnsof the DataFrame):

In [148]: df[df['A'] > 0]Out[148]:                    A         B         C         D   E   02000-01-01  0.469112 -0.282863 -1.509059 -1.135632 NaN NaN2000-01-02  1.212112 -0.173215  0.119209 -1.044236 NaN NaN2000-01-04  7.000000 -0.706771 -1.039575  0.271860 NaN NaN2000-01-07  0.404705  0.577046 -1.715002 -1.039268 NaN NaN

List comprehensions and the map method of Series can also be used to producemore complex criteria:

In [149]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'three', 'two', 'one', 'six'],   .....:                     'b': ['x', 'y', 'y', 'x', 'y', 'x', 'x'],   .....:                     'c': np.random.randn(7)})   .....: # only want 'two' or 'three'In [150]: criterion = df2['a'].map(lambda x: x.startswith('t'))In [151]: df2[criterion]Out[151]:        a  b         c2    two  y  0.0412903  three  x  0.3617194    two  y -0.238075# equivalent but slowerIn [152]: df2[[x.startswith('t') for x in df2['a']]]Out[152]:        a  b         c2    two  y  0.0412903  three  x  0.3617194    two  y -0.238075# Multiple criteriaIn [153]: df2[criterion & (df2['b'] == 'x')]Out[153]:        a  b         c3  three  x  0.361719

With the choice methods Selection by Label, Selection by Position,and Advanced Indexing you may select along more than one axis using boolean vectors combined with other indexing expressions.

In [154]: df2.loc[criterion & (df2['b'] == 'x'), 'b':'c']Out[154]:    b         c3  x  0.361719

Indexing with isin¶

Consider the isin() method of Series, which returns a booleanvector that is true wherever the Series elements exist in the passed list.This allows you to select rows where one or more columns have values you want:

In [155]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')In [156]: sOut[156]: 4    03    12    21    30    4dtype: int64In [157]: s.isin([2, 4, 6])Out[157]: 4    False3    False2     True1    False0     Truedtype: boolIn [158]: s[s.isin([2, 4, 6])]Out[158]: 2    20    4dtype: int64

The same method is available for Index objects and is useful for the caseswhen you don’t know which of the sought labels are in fact present:

In [159]: s[s.index.isin([2, 4, 6])]Out[159]: 4    02    2dtype: int64# compare it to the followingIn [160]: s.reindex([2, 4, 6])Out[160]: 2    2.04    0.06    NaNdtype: float64

In addition to that, MultiIndex allows selecting a separate level to usein the membership check:

In [161]: s_mi = pd.Series(np.arange(6),   .....:                  index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']]))   .....: In [162]: s_miOut[162]: 0  a    0   b    1   c    21  a    3   b    4   c    5dtype: int64In [163]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c')])]Out[163]: 0  c    21  a    3dtype: int64In [164]: s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)]Out[164]: 0  a    0   c    21  a    3   c    5dtype: int64

DataFrame also has an isin() method. When calling isin, pass a set ofvalues as either an array or dict. If values is an array, isin returnsa DataFrame of booleans that is the same shape as the original DataFrame, with Truewherever the element is in the sequence of values.

In [165]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],   .....:                    'ids2': ['a', 'n', 'c', 'n']})   .....: In [166]: values = ['a', 'b', 1, 3]In [167]: df.isin(values)Out[167]:     vals    ids   ids20   True   True   True1  False   True  False2   True  False  False3  False  False  False

Oftentimes you’ll want to match certain values with certain columns.Just make values a dict where the key is the column, and the value isa list of items you want to check for.

In [168]: values = {'ids': ['a', 'b'], 'vals': [1, 3]}In [169]: df.isin(values)Out[169]:     vals    ids   ids20   True   True  False1  False   True  False2   True  False  False3  False  False  False

Combine DataFrame’s isin with the any() and all() methods toquickly select subsets of your data that meet a given criteria.To select a row where each column meets its own criterion:

In [170]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}In [171]: row_mask = df.isin(values).all(1)In [172]: df[row_mask]Out[172]:    vals ids ids20     1   a    a

The where() Method and Masking¶

Selecting values from a Series with a boolean vector generally returns asubset of the data. To guarantee that selection output has the same shape asthe original data, you can use the where method in Series and DataFrame.

To return only the selected rows:

In [173]: s[s > 0]Out[173]: 3    12    21    30    4dtype: int64

To return a Series of the same shape as the original:

In [174]: s.where(s > 0)Out[174]: 4    NaN3    1.02    2.01    3.00    4.0dtype: float64

Selecting values from a DataFrame with a boolean criterion now also preservesinput data shape. where is used under the hood as the implementation.The code below is equivalent to df.where(df < 0).

In [175]: df[df < 0]Out[175]:                    A         B         C         D2000-01-01 -2.104139 -1.309525       NaN       NaN2000-01-02 -0.352480       NaN -1.192319       NaN2000-01-03 -0.864883       NaN -0.227870       NaN2000-01-04       NaN -1.222082       NaN -1.2332032000-01-05       NaN -0.605656 -1.169184       NaN2000-01-06       NaN -0.948458       NaN -0.6847182000-01-07 -2.670153 -0.114722       NaN -0.0480482000-01-08       NaN       NaN -0.048788 -0.808838

In addition, where takes an optional other argument for replacement ofvalues where the condition is False, in the returned copy.

In [176]: df.where(df < 0, -df)Out[176]:                    A         B         C         D2000-01-01 -2.104139 -1.309525 -0.485855 -0.2451662000-01-02 -0.352480 -0.390389 -1.192319 -1.6558242000-01-03 -0.864883 -0.299674 -0.227870 -0.2810592000-01-04 -0.846958 -1.222082 -0.600705 -1.2332032000-01-05 -0.669692 -0.605656 -1.169184 -0.3424162000-01-06 -0.868584 -0.948458 -2.297780 -0.6847182000-01-07 -2.670153 -0.114722 -0.168904 -0.0480482000-01-08 -0.801196 -1.392071 -0.048788 -0.808838

You may wish to set values based on some boolean criteria.This can be done intuitively like so:

In [177]: s2 = s.copy()In [178]: s2[s2 < 0] = 0In [179]: s2Out[179]: 4    03    12    21    30    4dtype: int64In [180]: df2 = df.copy()In [181]: df2[df2 < 0] = 0In [182]: df2Out[182]:                    A         B         C         D2000-01-01  0.000000  0.000000  0.485855  0.2451662000-01-02  0.000000  0.390389  0.000000  1.6558242000-01-03  0.000000  0.299674  0.000000  0.2810592000-01-04  0.846958  0.000000  0.600705  0.0000002000-01-05  0.669692  0.000000  0.000000  0.3424162000-01-06  0.868584  0.000000  2.297780  0.0000002000-01-07  0.000000  0.000000  0.168904  0.0000002000-01-08  0.801196  1.392071  0.000000  0.000000

By default, where returns a modified copy of the data. There is anoptional parameter inplace so that the original data can be modifiedwithout creating a copy:

In [183]: df_orig = df.copy()In [184]: df_orig.where(df > 0, -df, inplace=True)In [185]: df_origOut[185]:                    A         B         C         D2000-01-01  2.104139  1.309525  0.485855  0.2451662000-01-02  0.352480  0.390389  1.192319  1.6558242000-01-03  0.864883  0.299674  0.227870  0.2810592000-01-04  0.846958  1.222082  0.600705  1.2332032000-01-05  0.669692  0.605656  1.169184  0.3424162000-01-06  0.868584  0.948458  2.297780  0.6847182000-01-07  2.670153  0.114722  0.168904  0.0480482000-01-08  0.801196  1.392071  0.048788  0.808838

Note

The signature for DataFrame.where() differs from numpy.where().Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

In [186]: df.where(df < 0, -df) == np.where(df < 0, df, -df)Out[186]:                A     B     C     D2000-01-01  True  True  True  True2000-01-02  True  True  True  True2000-01-03  True  True  True  True2000-01-04  True  True  True  True2000-01-05  True  True  True  True2000-01-06  True  True  True  True2000-01-07  True  True  True  True2000-01-08  True  True  True  True

Alignment

Furthermore, where aligns the input boolean condition (ndarray or DataFrame),such that partial selection with setting is possible. This is analogous topartial setting via .loc (but on the contents rather than the axis labels).

In [187]: df2 = df.copy()In [188]: df2[df2[1:4] > 0] = 3In [189]: df2Out[189]:                    A         B         C         D2000-01-01 -2.104139 -1.309525  0.485855  0.2451662000-01-02 -0.352480  3.000000 -1.192319  3.0000002000-01-03 -0.864883  3.000000 -0.227870  3.0000002000-01-04  3.000000 -1.222082  3.000000 -1.2332032000-01-05  0.669692 -0.605656 -1.169184  0.3424162000-01-06  0.868584 -0.948458  2.297780 -0.6847182000-01-07 -2.670153 -0.114722  0.168904 -0.0480482000-01-08  0.801196  1.392071 -0.048788 -0.808838

Where can also accept axis and level parameters to align the input whenperforming the where.

In [190]: df2 = df.copy()In [191]: df2.where(df2 > 0, df2['A'], axis='index')Out[191]:                    A         B         C         D2000-01-01 -2.104139 -2.104139  0.485855  0.2451662000-01-02 -0.352480  0.390389 -0.352480  1.6558242000-01-03 -0.864883  0.299674 -0.864883  0.2810592000-01-04  0.846958  0.846958  0.600705  0.8469582000-01-05  0.669692  0.669692  0.669692  0.3424162000-01-06  0.868584  0.868584  2.297780  0.8685842000-01-07 -2.670153 -2.670153  0.168904 -2.6701532000-01-08  0.801196  1.392071  0.801196  0.801196

This is equivalent to (but faster than) the following.

In [192]: df2 = df.copy()In [193]: df.apply(lambda x, y: x.where(x > 0, y), y=df['A'])Out[193]:                    A         B         C         D2000-01-01 -2.104139 -2.104139  0.485855  0.2451662000-01-02 -0.352480  0.390389 -0.352480  1.6558242000-01-03 -0.864883  0.299674 -0.864883  0.2810592000-01-04  0.846958  0.846958  0.600705  0.8469582000-01-05  0.669692  0.669692  0.669692  0.3424162000-01-06  0.868584  0.868584  2.297780  0.8685842000-01-07 -2.670153 -2.670153  0.168904 -2.6701532000-01-08  0.801196  1.392071  0.801196  0.801196

where can accept a callable as condition and other arguments. The function mustbe with one argument (the calling Series or DataFrame) and that returns valid outputas condition and other argument.

In [194]: df3 = pd.DataFrame({'A': [1, 2, 3],   .....:                     'B': [4, 5, 6],   .....:                     'C': [7, 8, 9]})   .....: In [195]: df3.where(lambda x: x > 4, lambda x: x + 10)Out[195]:     A   B  C0  11  14  71  12   5  82  13   6  9

Mask¶

mask() is the inverse boolean operation of where.

In [196]: s.mask(s >= 0)Out[196]: 4   NaN3   NaN2   NaN1   NaN0   NaNdtype: float64In [197]: df.mask(df >= 0)Out[197]:                    A         B         C         D2000-01-01 -2.104139 -1.309525       NaN       NaN2000-01-02 -0.352480       NaN -1.192319       NaN2000-01-03 -0.864883       NaN -0.227870       NaN2000-01-04       NaN -1.222082       NaN -1.2332032000-01-05       NaN -0.605656 -1.169184       NaN2000-01-06       NaN -0.948458       NaN -0.6847182000-01-07 -2.670153 -0.114722       NaN -0.0480482000-01-08       NaN       NaN -0.048788 -0.808838

The query() Method¶

DataFrame objects have a query()method that allows selection using an expression.

You can get the value of the frame where column b has valuesbetween the values of columns a and c. For example:

In [198]: n = 10In [199]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))In [200]: dfOut[200]:           a         b         c0  0.438921  0.118680  0.8636701  0.138138  0.577363  0.6866022  0.595307  0.564592  0.5206303  0.913052  0.926075  0.6161844  0.078718  0.854477  0.8987255  0.076404  0.523211  0.5915386  0.792342  0.216974  0.5640567  0.397890  0.454131  0.9157168  0.074315  0.437913  0.0197949  0.559209  0.502065  0.026437# pure pythonIn [201]: df[(df['a'] < df['b']) & (df['b'] < df['c'])]Out[201]:           a         b         c1  0.138138  0.577363  0.6866024  0.078718  0.854477  0.8987255  0.076404  0.523211  0.5915387  0.397890  0.454131  0.915716# queryIn [202]: df.query('(a < b) & (b < c)')Out[202]:           a         b         c1  0.138138  0.577363  0.6866024  0.078718  0.854477  0.8987255  0.076404  0.523211  0.5915387  0.397890  0.454131  0.915716

Do the same thing but fall back on a named index if there is no columnwith the name a.

In [203]: df = pd.DataFrame(np.random.randint(n / 2, size=(n, 2)), columns=list('bc'))In [204]: df.index.name = 'a'In [205]: dfOut[205]:    b  ca      0  0  41  0  12  3  43  4  34  1  45  0  36  0  17  3  48  2  39  1  1In [206]: df.query('a < b and b < c')Out[206]:    b  ca      2  3  4

If instead you don’t want to or cannot name your index, you can use the nameindex in your query expression:

In [207]: df = pd.DataFrame(np.random.randint(n, size=(n, 2)), columns=list('bc'))In [208]: dfOut[208]:    b  c0  3  11  3  02  5  63  5  24  7  45  0  16  2  57  0  18  6  09  7  9In [209]: df.query('index < b < c')Out[209]:    b  c2  5  6

Note

If the name of your index overlaps with a column name, the column name isgiven precedence. For example,

In [210]: df = pd.DataFrame({'a': np.random.randint(5, size=5)})In [211]: df.index.name = 'a'In [212]: df.query('a > 2')  # uses the column 'a', not the indexOut[212]:    aa   1  33  3

You can still use the index in a query expression by using the specialidentifier ‘index’:

In [213]: df.query('index > 2')Out[213]:    aa   3  34  2

If for some reason you have a column named index, then you can refer tothe index as ilevel_0 as well, but at this point you should considerrenaming your columns to something less ambiguous.

MultiIndex query() Syntax¶

You can also use the levels of a DataFrame with aMultiIndex as if they were columns in the frame:

In [214]: n = 10In [215]: colors = np.random.choice(['red', 'green'], size=n)In [216]: foods = np.random.choice(['eggs', 'ham'], size=n)In [217]: colorsOut[217]: array(['red', 'red', 'red', 'green', 'green', 'green', 'green', 'green',       'green', 'green'], dtype='<U5')In [218]: foodsOut[218]: array(['ham', 'ham', 'eggs', 'eggs', 'eggs', 'ham', 'ham', 'eggs', 'eggs',       'eggs'], dtype='<U4')In [219]: index = pd.MultiIndex.from_arrays([colors, foods], names=['color', 'food'])In [220]: df = pd.DataFrame(np.random.randn(n, 2), index=index)In [221]: dfOut[221]:                    0         1color food                    red   ham   0.194889 -0.381994      ham   0.318587  2.089075      eggs -0.728293 -0.090255green eggs -0.748199  1.318931      eggs -2.029766  0.792652      ham   0.461007 -0.542749      ham  -0.305384 -0.479195      eggs  0.095031 -0.270099      eggs -0.707140 -0.773882      eggs  0.229453  0.304418In [222]: df.query('color == "red"')Out[222]:                    0         1color food                    red   ham   0.194889 -0.381994      ham   0.318587  2.089075      eggs -0.728293 -0.090255

If the levels of the MultiIndex are unnamed, you can refer to them usingspecial names:

In [223]: df.index.names = [None, None]In [224]: dfOut[224]:                    0         1red   ham   0.194889 -0.381994      ham   0.318587  2.089075      eggs -0.728293 -0.090255green eggs -0.748199  1.318931      eggs -2.029766  0.792652      ham   0.461007 -0.542749      ham  -0.305384 -0.479195      eggs  0.095031 -0.270099      eggs -0.707140 -0.773882      eggs  0.229453  0.304418In [225]: df.query('ilevel_0 == "red"')Out[225]:                  0         1red ham   0.194889 -0.381994    ham   0.318587  2.089075    eggs -0.728293 -0.090255

The convention is ilevel_0, which means “index level 0” for the 0th levelof the index.

query() Use Cases¶

A use case for query() is when you have a collection ofDataFrame objects that have a subset of column names (or indexlevels/names) in common. You can pass the same query to both frames withouthaving to specify which frame you’re interested in querying

In [226]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))In [227]: dfOut[227]:           a         b         c0  0.224283  0.736107  0.1391681  0.302827  0.657803  0.7138972  0.611185  0.136624  0.9849603  0.195246  0.123436  0.6277124  0.618673  0.371660  0.0479025  0.480088  0.062993  0.1857606  0.568018  0.483467  0.4452897  0.309040  0.274580  0.5871018  0.258993  0.477769  0.3702559  0.550459  0.840870  0.304611In [228]: df2 = pd.DataFrame(np.random.rand(n + 2, 3), columns=df.columns)In [229]: df2Out[229]:            a         b         c0   0.357579  0.229800  0.5960011   0.309059  0.957923  0.9656632   0.123102  0.336914  0.3186163   0.526506  0.323321  0.8608134   0.518736  0.486514  0.3847245   0.190804  0.505723  0.6145336   0.891939  0.623977  0.6766397   0.480559  0.378528  0.4608588   0.420223  0.136404  0.1412959   0.732206  0.419540  0.60467510  0.604466  0.848974  0.89616511  0.589168  0.920046  0.732716In [230]: expr = '0.0 <= a <= c <= 0.5'In [231]: map(lambda frame: frame.query(expr), [df, df2])Out[231]: <map at 0x7f9da2b398b0>

query() Python versus pandas Syntax Comparison¶

Full numpy-like syntax:

In [232]: df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=list('abc'))In [233]: dfOut[233]:    a  b  c0  7  8  91  1  0  72  2  7  23  6  2  24  2  6  35  3  8  26  1  7  27  5  1  58  9  8  09  1  5  0In [234]: df.query('(a < b) & (b < c)')Out[234]:    a  b  c0  7  8  9In [235]: df[(df['a'] < df['b']) & (df['b'] < df['c'])]Out[235]:    a  b  c0  7  8  9

Slightly nicer by removing the parentheses (by binding making comparisonoperators bind tighter than & and |).

In [236]: df.query('a < b & b < c')Out[236]:    a  b  c0  7  8  9

Use English instead of symbols:

In [237]: df.query('a < b and b < c')Out[237]:    a  b  c0  7  8  9

Pretty close to how you might write it on paper:

In [238]: df.query('a < b < c')Out[238]:    a  b  c0  7  8  9

The in and not in operators¶

query() also supports special use of Python’s in andnot in comparison operators, providing a succinct syntax for calling theisin method of a Series or DataFrame.

# get all rows where columns "a" and "b" have overlapping valuesIn [239]: df = pd.DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbcccc'),   .....:                    'c': np.random.randint(5, size=12),   .....:                    'd': np.random.randint(9, size=12)})   .....: In [240]: dfOut[240]:     a  b  c  d0   a  a  2  61   a  a  4  72   b  a  1  63   b  a  2  14   c  b  3  65   c  b  0  26   d  b  3  37   d  b  2  18   e  c  4  39   e  c  2  010  f  c  0  611  f  c  1  2In [241]: df.query('a in b')Out[241]:    a  b  c  d0  a  a  2  61  a  a  4  72  b  a  1  63  b  a  2  14  c  b  3  65  c  b  0  2# How you'd do it in pure PythonIn [242]: df[df['a'].isin(df['b'])]Out[242]:    a  b  c  d0  a  a  2  61  a  a  4  72  b  a  1  63  b  a  2  14  c  b  3  65  c  b  0  2In [243]: df.query('a not in b')Out[243]:     a  b  c  d6   d  b  3  37   d  b  2  18   e  c  4  39   e  c  2  010  f  c  0  611  f  c  1  2# pure PythonIn [244]: df[~df['a'].isin(df['b'])]Out[244]:     a  b  c  d6   d  b  3  37   d  b  2  18   e  c  4  39   e  c  2  010  f  c  0  611  f  c  1  2

You can combine this with other expressions for very succinct queries:

# rows where cols a and b have overlapping values# and col c's values are less than col d'sIn [245]: df.query('a in b and c < d')Out[245]:    a  b  c  d0  a  a  2  61  a  a  4  72  b  a  1  64  c  b  3  65  c  b  0  2# pure PythonIn [246]: df[df['b'].isin(df['a']) & (df['c'] < df['d'])]Out[246]:     a  b  c  d0   a  a  2  61   a  a  4  72   b  a  1  64   c  b  3  65   c  b  0  210  f  c  0  611  f  c  1  2

Note

Note that in and not in are evaluated in Python, since numexprhas no equivalent of this operation. However, only the in/not inexpression itself is evaluated in vanilla Python. For example, in theexpression

df.query('a in b + c + d')

(b + c + d) is evaluated by numexpr and then the inoperation is evaluated in plain Python. In general, any operations that canbe evaluated using numexpr will be.

Special use of the == operator with list objects¶

Comparing a list of values to a column using ==/!= works similarlyto in/not in.

In [247]: df.query('b == ["a", "b", "c"]')Out[247]:     a  b  c  d0   a  a  2  61   a  a  4  72   b  a  1  63   b  a  2  14   c  b  3  65   c  b  0  26   d  b  3  37   d  b  2  18   e  c  4  39   e  c  2  010  f  c  0  611  f  c  1  2# pure PythonIn [248]: df[df['b'].isin(["a", "b", "c"])]Out[248]:     a  b  c  d0   a  a  2  61   a  a  4  72   b  a  1  63   b  a  2  14   c  b  3  65   c  b  0  26   d  b  3  37   d  b  2  18   e  c  4  39   e  c  2  010  f  c  0  611  f  c  1  2In [249]: df.query('c == [1, 2]')Out[249]:     a  b  c  d0   a  a  2  62   b  a  1  63   b  a  2  17   d  b  2  19   e  c  2  011  f  c  1  2In [250]: df.query('c != [1, 2]')Out[250]:     a  b  c  d1   a  a  4  74   c  b  3  65   c  b  0  26   d  b  3  38   e  c  4  310  f  c  0  6# using in/not inIn [251]: df.query('[1, 2] in c')Out[251]:     a  b  c  d0   a  a  2  62   b  a  1  63   b  a  2  17   d  b  2  19   e  c  2  011  f  c  1  2In [252]: df.query('[1, 2] not in c')Out[252]:     a  b  c  d1   a  a  4  74   c  b  3  65   c  b  0  26   d  b  3  38   e  c  4  310  f  c  0  6# pure PythonIn [253]: df[df['c'].isin([1, 2])]Out[253]:     a  b  c  d0   a  a  2  62   b  a  1  63   b  a  2  17   d  b  2  19   e  c  2  011  f  c  1  2

Boolean operators¶

You can negate boolean expressions with the word not or the ~ operator.

In [254]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))In [255]: df['bools'] = np.random.rand(len(df)) > 0.5In [256]: df.query('~bools')Out[256]:           a         b         c  bools2  0.697753  0.212799  0.329209  False7  0.275396  0.691034  0.826619  False8  0.190649  0.558748  0.262467  FalseIn [257]: df.query('not bools')Out[257]:           a         b         c  bools2  0.697753  0.212799  0.329209  False7  0.275396  0.691034  0.826619  False8  0.190649  0.558748  0.262467  FalseIn [258]: df.query('not bools') == df[~df['bools']]Out[258]:       a     b     c  bools2  True  True  True   True7  True  True  True   True8  True  True  True   True

Of course, expressions can be arbitrarily complex too:

# short query syntaxIn [259]: shorter = df.query('a < b < c and (not bools) or bools > 2')# equivalent in pure PythonIn [260]: longer = df[(df['a'] < df['b'])   .....:             & (df['b'] < df['c'])   .....:             & (~df['bools'])   .....:             | (df['bools'] > 2)]   .....: In [261]: shorterOut[261]:           a         b         c  bools7  0.275396  0.691034  0.826619  FalseIn [262]: longerOut[262]:           a         b         c  bools7  0.275396  0.691034  0.826619  FalseIn [263]: shorter == longerOut[263]:       a     b     c  bools7  True  True  True   True

Performance of query()

DataFrame.query() using numexpr is slightly faster than Python forlarge frames.

Note

You will only see the performance benefits of using the numexpr enginewith DataFrame.query() if your frame has more than approximately 200,000rows.

This plot was created using a DataFrame with 3 columns each containingfloating point values generated using numpy.random.randn().

Duplicate data¶

If you want to identify and remove duplicate rows in a DataFrame, there aretwo methods that will help: duplicated and drop_duplicates. Eachtakes as an argument the columns to use to identify duplicated rows.

  • duplicated returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated.

  • drop_duplicates removes duplicate rows.

By default, the first observed row of a duplicate set is considered unique, buteach method has a keep parameter to specify targets to be kept.

  • keep='first' (default): mark / drop duplicates except for the first occurrence.

  • keep='last': mark / drop duplicates except for the last occurrence.

  • keep=False: mark / drop all duplicates.

In [264]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'two', 'two', 'three', 'four'],   .....:                     'b': ['x', 'y', 'x', 'y', 'x', 'x', 'x'],   .....:                     'c': np.random.randn(7)})   .....: In [265]: df2Out[265]:        a  b         c0    one  x -1.0671371    one  y  0.3095002    two  x -0.2110563    two  y -1.8420234    two  x -0.3908205  three  x -1.9644756   four  x  1.298329In [266]: df2.duplicated('a')Out[266]: 0    False1     True2    False3     True4     True5    False6    Falsedtype: boolIn [267]: df2.duplicated('a', keep='last')Out[267]: 0     True1    False2     True3     True4    False5    False6    Falsedtype: boolIn [268]: df2.duplicated('a', keep=False)Out[268]: 0     True1     True2     True3     True4     True5    False6    Falsedtype: boolIn [269]: df2.drop_duplicates('a')Out[269]:        a  b         c0    one  x -1.0671372    two  x -0.2110565  three  x -1.9644756   four  x  1.298329In [270]: df2.drop_duplicates('a', keep='last')Out[270]:        a  b         c1    one  y  0.3095004    two  x -0.3908205  three  x -1.9644756   four  x  1.298329In [271]: df2.drop_duplicates('a', keep=False)Out[271]:        a  b         c5  three  x -1.9644756   four  x  1.298329

Also, you can pass a list of columns to identify duplications.

In [272]: df2.duplicated(['a', 'b'])Out[272]: 0    False1    False2    False3    False4     True5    False6    Falsedtype: boolIn [273]: df2.drop_duplicates(['a', 'b'])Out[273]:        a  b         c0    one  x -1.0671371    one  y  0.3095002    two  x -0.2110563    two  y -1.8420235  three  x -1.9644756   four  x  1.298329

To drop duplicates by index value, use Index.duplicated then perform slicing.The same set of options are available for the keep parameter.

In [274]: df3 = pd.DataFrame({'a': np.arange(6),   .....:                     'b': np.random.randn(6)},   .....:                    index=['a', 'a', 'b', 'c', 'b', 'a'])   .....: In [275]: df3Out[275]:    a         ba  0  1.440455a  1  2.456086b  2  1.038402c  3 -0.894409b  4  0.683536a  5  3.082764In [276]: df3.index.duplicated()Out[276]: array([False,  True, False, False,  True,  True])In [277]: df3[~df3.index.duplicated()]Out[277]:    a         ba  0  1.440455b  2  1.038402c  3 -0.894409In [278]: df3[~df3.index.duplicated(keep='last')]Out[278]:    a         bc  3 -0.894409b  4  0.683536a  5  3.082764In [279]: df3[~df3.index.duplicated(keep=False)]Out[279]:    a         bc  3 -0.894409

Dictionary-like get() method¶

Each of Series or DataFrame have a get method which can return adefault value.

In [280]: s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])In [281]: s.get('a')  # equivalent to s['a']Out[281]: 1In [282]: s.get('x', default=-1)Out[282]: -1

The lookup() method¶

Sometimes you want to extract a set of values given a sequence of row labelsand column labels, and the lookup method allows for this and returns aNumPy array. For instance:

In [283]: dflookup = pd.DataFrame(np.random.rand(20, 4), columns = ['A', 'B', 'C', 'D'])In [284]: dflookup.lookup(list(range(0, 10, 2)), ['B', 'C', 'A', 'B', 'D'])Out[284]: array([0.3506, 0.4779, 0.4825, 0.9197, 0.5019])

Index objects¶

The pandas Index class and its subclasses can be viewed asimplementing an ordered multiset. Duplicates are allowed. However, if you tryto convert an Index object with duplicate entries into aset, an exception will be raised.

Index also provides the infrastructure necessary forlookups, data alignment, and reindexing. The easiest way to create anIndex directly is to pass a list or other sequence toIndex:

In [285]: index = pd.Index(['e', 'd', 'a', 'b'])In [286]: indexOut[286]: Index(['e', 'd', 'a', 'b'], dtype='object')In [287]: 'd' in indexOut[287]: True

You can also pass a name to be stored in the index:

In [288]: index = pd.Index(['e', 'd', 'a', 'b'], name='something')In [289]: index.nameOut[289]: 'something'

The name, if set, will be shown in the console display:

In [290]: index = pd.Index(list(range(5)), name='rows')In [291]: columns = pd.Index(['A', 'B', 'C'], name='cols')In [292]: df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns)In [293]: dfOut[293]: cols         A         B         Crows                              0     1.295989  0.185778  0.4362591     0.678101  0.311369 -0.5283782    -0.674808 -1.103529 -0.6561573     1.889957  2.076651 -1.1021924    -1.211795 -0.791746  0.634724In [294]: df['A']Out[294]: rows0    1.2959891    0.6781012   -0.6748083    1.8899574   -1.211795Name: A, dtype: float64

Setting metadata¶

Indexes are “mostly immutable”, but it is possible to set and change theirmetadata, like the index name (or, for MultiIndex, levels andcodes).

You can use the rename, set_names, set_levels, and set_codesto set these attributes directly. They default to returning a copy; however,you can specify inplace=True to have the data change in place.

See Advanced Indexing for usage of MultiIndexes.

In [295]: ind = pd.Index([1, 2, 3])In [296]: ind.rename("apple")Out[296]: Int64Index([1, 2, 3], dtype='int64', name='apple')In [297]: indOut[297]: Int64Index([1, 2, 3], dtype='int64')In [298]: ind.set_names(["apple"], inplace=True)In [299]: ind.name = "bob"In [300]: indOut[300]: Int64Index([1, 2, 3], dtype='int64', name='bob')

set_names, set_levels, and set_codes also take an optionallevel argument

In [301]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second'])In [302]: indexOut[302]: MultiIndex([(0, 'one'),            (0, 'two'),            (1, 'one'),            (1, 'two'),            (2, 'one'),            (2, 'two')],           names=['first', 'second'])In [303]: index.levels[1]Out[303]: Index(['one', 'two'], dtype='object', name='second')In [304]: index.set_levels(["a", "b"], level=1)Out[304]: MultiIndex([(0, 'a'),            (0, 'b'),            (1, 'a'),            (1, 'b'),            (2, 'a'),            (2, 'b')],           names=['first', 'second'])

Set operations on Index objects¶

The two main operations are union (|) and intersection (&).These can be directly called as instance methods or used via overloadedoperators. Difference is provided via the .difference() method.

In [305]: a = pd.Index(['c', 'b', 'a'])In [306]: b = pd.Index(['c', 'e', 'd'])In [307]: a | bOut[307]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')In [308]: a & bOut[308]: Index(['c'], dtype='object')In [309]: a.difference(b)Out[309]: Index(['a', 'b'], dtype='object')

Also available is the symmetric_difference (^) operation, which returns elementsthat appear in either idx1 or idx2, but not in both. This isequivalent to the Index created by idx1.difference(idx2).union(idx2.difference(idx1)),with duplicates dropped.

In [310]: idx1 = pd.Index([1, 2, 3, 4])In [311]: idx2 = pd.Index([2, 3, 4, 5])In [312]: idx1.symmetric_difference(idx2)Out[312]: Int64Index([1, 5], dtype='int64')In [313]: idx1 ^ idx2Out[313]: Int64Index([1, 5], dtype='int64')

Note

The resulting index from a set operation will be sorted in ascending order.

When performing Index.union() between indexes with different dtypes, the indexesmust be cast to a common dtype. Typically, though not always, this is object dtype. Theexception is when performing a union between integer and float data. In this case, theinteger values are converted to float

In [314]: idx1 = pd.Index([0, 1, 2])In [315]: idx2 = pd.Index([0.5, 1.5])In [316]: idx1 | idx2Out[316]: Float64Index([0.0, 0.5, 1.0, 1.5, 2.0], dtype='float64')

Missing values¶

Important

Even though Index can hold missing values (NaN), it should be avoidedif you do not want any unexpected results. For example, some operationsexclude missing values implicitly.

Index.fillna fills missing values with specified scalar value.

In [317]: idx1 = pd.Index([1, np.nan, 3, 4])In [318]: idx1Out[318]: Float64Index([1.0, nan, 3.0, 4.0], dtype='float64')In [319]: idx1.fillna(2)Out[319]: Float64Index([1.0, 2.0, 3.0, 4.0], dtype='float64')In [320]: idx2 = pd.DatetimeIndex([pd.Timestamp('2011-01-01'),   .....:                          pd.NaT,   .....:                          pd.Timestamp('2011-01-03')])   .....: In [321]: idx2Out[321]: DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03'], dtype='datetime64[ns]', freq=None)In [322]: idx2.fillna(pd.Timestamp('2011-01-02'))Out[322]: DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], dtype='datetime64[ns]', freq=None)

Set / reset index¶

Occasionally you will load or create a data set into a DataFrame and want toadd an index after you’ve already done so. There are a couple of differentways.

Set an index¶

DataFrame has a set_index() method which takes a column name(for a regular Index) or a list of column names (for a MultiIndex).To create a new, re-indexed DataFrame:

In [323]: dataOut[323]:      a    b  c    d0  bar  one  z  1.01  bar  two  y  2.02  foo  one  x  3.03  foo  two  w  4.0In [324]: indexed1 = data.set_index('c')In [325]: indexed1Out[325]:      a    b    dc               z  bar  one  1.0y  bar  two  2.0x  foo  one  3.0w  foo  two  4.0In [326]: indexed2 = data.set_index(['a', 'b'])In [327]: indexed2Out[327]:          c    da   b          bar one  z  1.0    two  y  2.0foo one  x  3.0    two  w  4.0

The append keyword option allow you to keep the existing index and appendthe given columns to a MultiIndex:

In [328]: frame = data.set_index('c', drop=False)In [329]: frame = frame.set_index(['a', 'b'], append=True)In [330]: frameOut[330]:            c    dc a   b          z bar one  z  1.0y bar two  y  2.0x foo one  x  3.0w foo two  w  4.0

Other options in set_index allow you not drop the index columns or to addthe index in-place (without creating a new object):

In [331]: data.set_index('c', drop=False)Out[331]:      a    b  c    dc                  z  bar  one  z  1.0y  bar  two  y  2.0x  foo  one  x  3.0w  foo  two  w  4.0In [332]: data.set_index(['a', 'b'], inplace=True)In [333]: dataOut[333]:          c    da   b          bar one  z  1.0    two  y  2.0foo one  x  3.0    two  w  4.0

Reset the index¶

As a convenience, there is a new function on DataFrame calledreset_index() which transfers the index values into theDataFrame’s columns and sets a simple integer index.This is the inverse operation of set_index().

In [334]: dataOut[334]:          c    da   b          bar one  z  1.0    two  y  2.0foo one  x  3.0    two  w  4.0In [335]: data.reset_index()Out[335]:      a    b  c    d0  bar  one  z  1.01  bar  two  y  2.02  foo  one  x  3.03  foo  two  w  4.0

The output is more similar to a SQL table or a record array. The names for thecolumns derived from the index are the ones stored in the names attribute.

You can use the level keyword to remove only a portion of the index:

In [336]: frameOut[336]:            c    dc a   b          z bar one  z  1.0y bar two  y  2.0x foo one  x  3.0w foo two  w  4.0In [337]: frame.reset_index(level=1)Out[337]:          a  c    dc b               z one  bar  z  1.0y two  bar  y  2.0x one  foo  x  3.0w two  foo  w  4.0

reset_index takes an optional parameter drop which if true simplydiscards the index, instead of putting index values in the DataFrame’s columns.

Adding an ad hoc index¶

If you create an index yourself, you can just assign it to the index field:

data.index = index

Returning a view versus a copy¶

When setting values in a pandas object, care must be taken to avoid what is calledchained indexing. Here is an example.

In [338]: dfmi = pd.DataFrame([list('abcd'),   .....:                      list('efgh'),   .....:                      list('ijkl'),   .....:                      list('mnop')],   .....:                     columns=pd.MultiIndex.from_product([['one', 'two'],   .....:                                                         ['first', 'second']]))   .....: In [339]: dfmiOut[339]:     one          two         first second first second0     a      b     c      d1     e      f     g      h2     i      j     k      l3     m      n     o      p

Compare these two access methods:

In [340]: dfmi['one']['second']Out[340]: 0    b1    f2    j3    nName: second, dtype: object
In [341]: dfmi.loc[:, ('one', 'second')]Out[341]: 0    b1    f2    j3    nName: (one, second), dtype: object

These both yield the same results, so which should you use? It is instructive to understand the orderof operations on these and why method 2 (.loc) is much preferred over method 1 (chained []).

dfmi['one'] selects the first level of the columns and returns a DataFrame that is singly-indexed.Then another Python operation dfmi_with_one['second'] selects the series indexed by 'second'.This is indicated by the variable dfmi_with_one because pandas sees these operations as separate events.e.g. separate calls to __getitem__, so it has to treat them as linear operations, they happen one after another.

Contrast this to df.loc[:,('one','second')] which passes a nested tuple of (slice(None),('one','second')) to a single call to__getitem__. This allows pandas to deal with this as a single entity. Furthermore this order of operations can be significantlyfaster, and allows one to index both axes if so desired.

Why does assignment fail when using chained indexing?¶

The problem in the previous section is just a performance issue. What’s up withthe SettingWithCopy warning? We don’t usually throw warnings around whenyou do something that might cost a few extra milliseconds!

But it turns out that assigning to the product of chained indexing hasinherently unpredictable results. To see this, think about how the Pythoninterpreter executes this code:

dfmi.loc[:, ('one', 'second')] = value# becomesdfmi.loc.__setitem__((slice(None), ('one', 'second')), value)

But this code is handled differently:

dfmi['one']['second'] = value# becomesdfmi.__getitem__('one').__setitem__('second', value)

See that __getitem__ in there? Outside of simple cases, it’s very hard topredict whether it will return a view or a copy (it depends on the memory layoutof the array, about which pandas makes no guarantees), and therefore whetherthe __setitem__ will modify dfmi or a temporary object that gets thrownout immediately afterward. That’s what SettingWithCopy is warning youabout!

Note

You may be wondering whether we should be concerned about the locproperty in the first example. But dfmi.loc is guaranteed to be dfmiitself with modified indexing behavior, so dfmi.loc.__getitem__ /dfmi.loc.__setitem__ operate on dfmi directly. Of course,dfmi.loc.__getitem__(idx) may be a view or a copy of dfmi.

Sometimes a SettingWithCopy warning will arise at times when there’s noobvious chained indexing going on. These are the bugs thatSettingWithCopy is designed to catch! Pandas is probably trying to warn youthat you’ve done this:

def do_something(df):    foo = df[['bar', 'baz']]  # Is foo a view? A copy? Nobody knows!    # ... many lines here ...    # We don't know whether this will modify df or not!    foo['quux'] = value    return foo

Yikes!

Evaluation order matters¶

When you use chained indexing, the order and type of the indexing operationpartially determine whether the result is a slice into the original object, ora copy of the slice.

Pandas has the SettingWithCopyWarning because assigning to a copy of aslice is frequently not intentional, but a mistake caused by chained indexingreturning a copy where a slice was expected.

If you would like pandas to be more or less trusting about assignment to achained indexing expression, you can set the optionmode.chained_assignment to one of these values:

  • 'warn', the default, means a SettingWithCopyWarning is printed.

  • 'raise' means pandas will raise a SettingWithCopyExceptionyou have to deal with.

  • None will suppress the warnings entirely.

In [342]: dfb = pd.DataFrame({'a': ['one', 'one', 'two',   .....:                           'three', 'two', 'one', 'six'],   .....:                     'c': np.arange(7)})   .....: # This will show the SettingWithCopyWarning# but the frame values will be setIn [343]: dfb['c'][dfb['a'].str.startswith('o')] = 42

This however is operating on a copy and will not work.

>>> pd.set_option('mode.chained_assignment','warn')>>> dfb[dfb['a'].str.startswith('o')]['c'] = 42Traceback (most recent call last)     ...SettingWithCopyWarning:     A value is trying to be set on a copy of a slice from a DataFrame.     Try using .loc[row_index,col_indexer] = value instead

A chained assignment can also crop up in setting in a mixed dtype frame.

Note

These setting rules apply to all of .loc/.iloc.

The following is the recommended access method using .loc for multiple items (using mask) and a single item using a fixed index:

In [344]: dfc = pd.DataFrame({'a': ['one', 'one', 'two',   .....:                           'three', 'two', 'one', 'six'],   .....:                     'c': np.arange(7)})   .....: In [345]: dfd = dfc.copy()# Setting multiple items using a maskIn [346]: mask = dfd['a'].str.startswith('o')In [347]: dfd.loc[mask, 'c'] = 42In [348]: dfdOut[348]:        a   c0    one  421    one  422    two   23  three   34    two   45    one  426    six   6# Setting a single itemIn [349]: dfd = dfc.copy()In [350]: dfd.loc[2, 'a'] = 11In [351]: dfdOut[351]:        a  c0    one  01    one  12     11  23  three  34    two  45    one  56    six  6

The following can work at times, but it is not guaranteed to, and therefore should be avoided:

In [352]: dfd = dfc.copy()In [353]: dfd['a'][2] = 111In [354]: dfdOut[354]:        a  c0    one  01    one  12    111  23  three  34    two  45    one  56    six  6

Last, the subsequent example will not work at all, and so should be avoided:

>>> pd set_option 'mode.chained_assignment' 'raise' >>> dfd loc [ 0 ] [ 'a' ]  =  1111追溯(最近一次调用最近)     ... SettingWithCopyException:     试图在DataFrame的切片副本上设置一个值。     尝试改用.loc [row_index,col_indexer] = value

警告

链接的作业警告/异常预测通知用户可能无效的作业。可能存在误报;意外报告链接分配的情况。

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
学习pandas下的dataframe画图参数
python基础1| 索引与切片
pandas学习
[转]10 minutes to pandas
10张思维导图,全面讲解 Pandas
十分钟搞定pandas
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服