打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
单激式开关电源设计挑战分析与设计实例分享
  第一讲:单激式开关电源的工作原理与特点

  图1是单激式开关电源的基本原理图。图中,T为开关变压器,N1和N2分别为开关变压器初、次级线圈;
为开关变压器的漏感,
为开关变压器初级线圈的励磁电感;
为开关变压器初级线圈的分布电容,
为开关变压器次级线圈的输出负载,Q1为电源开关管。



图1 开关电源的基本电路

  变压器初级线圈或次级线圈的分布电容Cs可按下式进行计算:



  式中,

为第
层与+1层线圈之间的静态电容,
= 1、2、3、? ? ?、n ,n为所求总分布电容的变压器初级线圈或次级线圈的层数;
为第
层与
+1层线圈之间的平均周长;
为第
层与
+1层线圈之间分布电容的动态系数,
,它与加到电容两端的电压有关,
是一个小于1的系数;

为第
层与
+1层线圈之间的标准电位差,其值一般等于相邻两层线圈工作电压之和,即:
,U为变压器初级线圈或次级线圈两端的工作电压;
分别为第
层与
+1层线圈之间x=0和x=h处对应的电位差;当线圈层间按S绕法时,
= 0,
=
;当线圈层间按Z绕法时,


  如果不考虑变压器次级线圈对初级线圈的影响,对于一个功率大约为100瓦的开关变压器,其初级线圈的分布电容大约在100~2000微微法之间;如果把次级线圈的分别电容也考虑进去,总的分布电容可能要大一倍左右,因为初、次级线圈分布电容的转换比是平方的关系。因此,分布电容对输出波形的影响是很大的。

  根据变压器的工作原理,图1中的开关变压器还可以等效为图2所示电路。


图2 开关变压器的等效电路

  在图2中,Ls为漏感,漏感也称漏磁电感,或称分布电感;Cs为分布电容(总分布电容), lu为励磁电感,R为等效负载电阻。设开关变压器初级线圈的电感为L,则g2 ;而分布电容Cs,则包括次级线圈等效到初级线圈一侧的分布电容,即,次级线圈的分布电容也要等效到初级线圈回路中;同理,等效负载电阻R,就是次级线圈的负载RL被等效到初级线圈回路中的电阻。

  设次级线圈的分布电容为C2,等效到初级线圈后的分布电容为C1,则有下面关系式:


  上式中,
为次级线圈分布电容
存储的能量,为
等效到初级线圈后的分布电容
存储的能量;
分别为初、次级线圈的电压,
为变压比,
分别为初、次级线圈的匝数。由此可以求得
为:

  (2)和(3)式的计算方法不但可以用于对初、次级线圈分布电容等效电路的换算,同样可以用于对初、次级线圈电路中其它电容等效电路的换算,以及用于对负载电阻的换算。所以,
亦可以是次级线圈电路中的任意电容,
等效到初级线圈电路中的电容。

  由此可以求得图2中,变压器的总分布电容Cs为:



  (4)式中,Cs为变压器的总分布电容,Cs1为变压器初级线圈的分布电容;而C1为次级线圈电路中所有电容等效到初级线圈电路中的电容;C2为次级线圈电路中所有电容(包括分布电容与电路中的电容);n = N2/N1为变压比。

  虽然看起来,图2开关变压器的等效电路与一般变压器的等效电路没有根本的区别,但开关变压器的等效电路一般是不能用稳态电路进行分析的;即:图2中的等效负载电阻R不是一个固定参数,它会随着开关电源的工作状态不断改变。例如,在反激式开关电源中,当开关管导通时,开关变压器是没有功率输出的,即负载电阻R等于无限大;而对于正激式开关电源,当开关管导通时,开关变压器是有功率输出的,即负载电阻R既不等于无限大,也不等于0 。因此,分布电感与分布电容对正激式开关电源和反激式开关电源工作的影响是不一样的。

  图3是开关变压器与电源开关管连接时的工作原理图。图3中,Q1为开关管,Cds为开关管漏极和源极之间的分布电容,Cgs为开关管栅极和源极之间的分布电容。值得说明的是,这里的Cgs和Cds都不是一个单纯性质的电容,它只是在开关管的导通和关断的一瞬间,其阻抗的变化过程与电容(或电感)的充放电过程很类似;而它的基本性质实际上还是属于电阻,因为它会损耗功率。

图3 单激式开关电源等效电路

  当开关管开始导通时,外电路给栅极(绝缘栅场效应管)加一正电压,通过静电感应,开关管耗尽层中的载流子(电子)在电场的作用下会重新进行分布,耗尽层中载流子浓度按指数规律不断增加,这个过程相当于对电容Cgs进行充电;随着耗尽层中载流子的重新分布,耗尽层的厚度也相应增加,其结果是耗尽层的电阻由大变小。
  因此,当开关管刚开始导通时,流过开关管的电流是由小变大,这个过程,与在电感两端加一电压方波时,流过电感的电流由小变大很相似;所以,在开关管刚导通的一瞬间,开关管的漏极和源极之间可以等效成一个电感Lds。由于这个电感相对分布电感Ls和励磁电感Lv来说很小,所以图3中没有画出。
 


图4 开关管导通时

  图4是图3中的开关管Q1导通时对应的等效工作原理图。在图4中,电感Lds为开关管Q1导通时的等效电感,当开关管Q1导通时,开关管的内部电阻将随时间由大逐步变小,它的作用好像一个电感,因此,当开关管Q1导通时,开关管可以等效成一个理想的开关与一个电感串联。但这个电感属于电阻性质,它会损耗能量,它不像实际中的电感那样可以储存能量(磁能),它实际上属于一个阻值由大变小的可变电阻,但如果用一个可变电阻来表示,在计算过程中将会很复杂,并且在开关管Q1导通的变化过程中,用一个可变电阻来表示也没有用一个电感来表示显得形象。

  当开关管开始关断时,外电路给栅极加一负电压(或低电压),通过静电感应,开关管内耗尽层中的载流子(电子)在电场的作用下会重新进行分布,相当于外电路要向耗尽层抽离载流子,耗尽层中载流子的浓度将按指数规律减小,耗尽层的厚度也将随时间增大而变小,其结果是耗尽层的电阻将随时间由小变大。这个过程,与电容被充电时,流过电容的电流由大变小很相似;所以,当开关管刚导通的一瞬间,开关管可以等效成一个理想的开关与一个电容器并联,这个电容器就是漏极和源极之间的分布电容Cds。如图5是开关管关断时,反激式开关电源的工作原理图。

图5 开关管关断时

  根据上面分析,栅极电容Cgs对开关管的导通影响比较大,容量越大,开关管的导通上升时间就越长。而漏极电容Cds对开关管的关断影响比较大,容量越大,开关管关断存储时间就越长。电容Cgs和Cds也称扩散电容,它们既具有电阻的性质,同时也具有电容充放电的特性,这种特性主要与耗尽层中载流子的浓度变化有关。

  当电源开关管为晶体管时,Cgs和Cds分别与Cbe和Cce对应,工作原理场效应管的工作原理基本相同或相似。不过基区参与导电的载流子的密度的增加或减少,不是靠静电感应的作用,而是靠基极电流的注入。

  由于开关管在导通或关断期间,其分布参数的性质和作用也在改变,因此,在图1~5中,要对分布电感Ls和分布电容Cs,以及Cgs和Cds组成的电流回路进行精确计算,难度是很大的。下面,我们将以很长的篇幅来对上面电路进行分析和计算。

  在图4中,分布电感Ls和分布电容Cs可以看成是一个串联振荡回路,当开关管Q1开始导通的时候,输入脉冲电压的上升率远远大于输入电压通过分布电感Ls对分布电容Cs充电电压的上升率,此时,串联振荡回路开始吸收能量,输入电压通过Lds和Ls对Cs进行充电,流过Ls和Cs的电流按正弦曲线增长;当开关管Q1完全导通以后,Lds的值等于0,此时,输入脉冲进入平顶阶段,相当于输入脉冲电压的上升率为0,由于,输入脉冲电压的上升率远远小于分布电感Ls与分布电容Cs进行充、放电时电压的上升率,因此,振荡回路开始释放能量,振荡回路会产生阻尼振荡。

  由于分布电感Ls和分布电容Cs的时间常数相对于励磁电感比较小,所以分布电感Ls和分布电容Cs产生阻尼振荡的过程主要发生在开关管Q1导通和关断的一瞬间。当开关管Q1导通或关断后不久,阻尼振荡很快就会停止。当输入电压对分布电容Cs充满电后,输入电压就完全加到励磁电感的两端。如果是反激式开关电源,流过励磁电感的电流将随时间从0开始线性增加;如果是正激式开关电源,流过励磁电感的电流将随时间按梯形波曲线增长。

  在开关管Q1导通期间,由于开关管的导通内阻非常小,分布电容Cds基本上是不起作用的。当开关管Q1由导通状态转换为关断时,开关管漏极和源极之间的分布电容Cds将被接入电路中,分布电感Ls和励磁电感将同时产生反电动势,并分别对分布电容Cds和Cs进行充、放电,电容与电感在交替进行能量交换的过程中,将产生串、并联振荡。

  但由于励磁电感的时间常数比Ls、Cs和Cds的时间常数大好多,因此,在产生振荡的过程中,主要由Ls、Cs和Cds三者产生作用。另外,在开关管开始关断期间,由于Cds实际上是一个阻抗由小到大,其阻抗变化过程类似于电容充电的可变电阻,它只吸收能量,而不会释放能量。因此,它在产生振荡的过程中,只对充电曲线的上升速率起影响,而对放电曲线的下降速率不起影响。

  第二讲:漏感与分布电容对输出波形的影响

  图6是图4和图5电路中,当开关管导通时(图4),输入电压ui通过开关变压器漏感Ls对分布电容Cs进行充电,使漏感Ls与分布电容Cs产生冲击振荡时,分布电容Cs两端的电压波形;和当开关管关断时(图5),输入电压ui与开关变压器漏感Ls和分布电容Cs、Cds产生充、放电时,电源开关管D、S极两端的波形。

  在图6中,图6-a是电源开关管Q1导通时,输入电压ui加于开关变压器初级线圈两端的电压波形;图6-b是分布电容Cs两端的电压波形;图6-c,是电源开关管Q1漏极D与源极S之间的电压波形。

  在t0时刻,电源开关管Q1开始导通,输入电压ui加于开关变压器两端,输入电压ui首先通过分布电感Ls对分布电容Cs充电,此时,由于输入电压ui的上升率大于电流通过分布电感Ls对分布电容Cs进行充电的电压上升率,所以,分布电感和分布电容都从输入电压吸收能量。输入电压ui在对分布电感Ls和分布电容Cs进行充电过程中,分布电容Cs两端的电压是按正弦曲线上升的;而放电时,其两端的电压则按余弦曲线下降。



图6

  到t1时刻,流过Ls的电流达到最大值,同时分布电容Cs两端的电压与输入电压ui相等(或与变压器初级线圈的正激输出半波平均值Upa相等),此时输入电压ui的上升率为0,输入电压ui的上升率小于分布电感Ls对分布电容Cs充电的电压uc上升率,所以,分布电感Ls开始释放能量继续对分布电容Cs进行充电。此时,Ls在释放能量,而输入电压ui和分布电容Cs都在吸收能量,分布电容Cs都两端的电压uc继续按正弦曲线上升。

  到t2时刻,流过Ls的电流等于0(储存于Ls中的能量被释放完毕),分布电感产生的反电动势对分布电容Cs进行充电结束,此时Cs两端的电压也达到最大值,然后Cs开始按余弦曲线对Ls和输入电压ui进行放电,流过Ls的电流开始反向,Ls开始反向储存磁能量。

  到t3时刻,Cs两端的电压又与输入电压ui相等,电容停止放电,此时,Ls储存的磁能量将转化成反电动势es给电容Cs进行反向充电,使Cs两端的电压低于输入电压ui。

  到t4时刻,流过Ls的反向电流等于0,Cs两端的电压达到最低值,然后输入电压又开始通过Ls对Cs进行充电,至此,分布电感Ls与分布电容Cs第一个充放电周期结束。

  到t4时刻之后,输入电压ui对分布电感Ls和分布电容Cs进行充电的过程,以及分布电感Ls和分布电容Cs互相进行充电的过程,与t0~t4时刻基本相同。但由于在此期间,输入电压的上升率等于0,输入电压不再向分布电感Ls和分布电容Cs提供能量,因此,分布电感Ls与分布电容Cs产生自由振荡的幅度是随着时间衰减的,其衰减速率与等效电阻大小有关。

  到t10时刻,分布电感Ls与分布电容Cs产生的阻尼自由振荡的幅度被衰减到差不多等于0,此时,分布电容Cs两端的电压等于变压器初级线圈的正激输出半波平均值Upa。

  在图6-b中,Upa为变压器初级线圈正激输出电压的半波平均值,此值与输入电压相等;Upa-为变压器初级线圈反激输出电压的半波平均值,此值与占空比相关;当占空比等于0.5时,Upa-与输入电压在数值上相等,但符号相反。

  到t11时刻,电源开关管Q1开始关断,由于流过分布电感Ls和励磁电感的电流通路突然被切断,其必然会产生反电动势和,此二反电动势将与输入电压ui一起串联对分布电容Cs和Cds进行充电。但由于Cs两端的电压与电压基本相等,因此,对分布电容Cds进行充电的电压正好是输入电压ui与反电动势电压和三者之和。

  到t12时刻,电源开关管Q1已经完全关断,但二反电动势和与输入电压ui还继续对分布电容Cs和Cds进行充电,不过,此时Cds的容量已经变得非常小,因为它表示开关管内部的扩散电容,属于电阻性质,当开关管完全关断之后,阻值为无限大(理想情况)。

  直到t13时刻,分布电感Ls储存的磁能量基本被释放完,二反电动势和才停止对分布电容Cs和Cds继续进行充电;此时,分布电容Cs和分布电容Cds的两端电压均达到了最大值,即,加到电源开关管Q1漏极上的电压达到最大值;而后,分布电容Cs又对原充电回路进行放电,并产生自由振荡,但由于电源开关管Q1关断后阻抗为无限大,其放电回路只能通过等效电阻R和励磁电感进行,所以振幅很快就衰减到0。图3-c为电源开关管D、S两端的波形。

  在实际应用中,电源开关管Q1的关断过程,实际上就是开关管的内阻由小变大的过程,把它等效成一个正在充电的电容器,只是为了便于分析,其实质还是一个可变电阻,并且开关管Q1完全关断之后,其阻抗也不是无限大,它总是有一定的漏电流,因此,开关管的内阻还是应该等效到回路电阻之中的,即:等效电阻R的阻值,时刻都是在变化的。

  在图6-c中,Uda为开关管Q1关断期间,D、S两极之间电压的半波平均值,Uda等于输入电压ui(ui=U)与变压器初级线圈产生反激输出电压的半波平均值Upa之和;Udp为开关管关断期间D、S两极之间电压的峰值。Udp和Uda的值均与占空比有关,当占空比等于0.5时,Uda约等于输入电压ui(ui=U)的2倍,而Udp则大于输入电压的2倍,并且Udp的值还与漏感Ls的值大小有关,Ls的值越大,Udp的值也越大。

 开关变压器次级线圈输出电压的半波平均值Upa和Upa-由下面两式求得:

(5)式中的uo为正激输出电压,其值为:

(7)式中,D为占空比,uo为反激输出电压,其值为:

(8)式中,L1、L2分别为开关变压器初、次级线圈的电感,n为开关变压器线圈的匝数比,n=N2/N1,Ui为变压器初级线圈的输入电压,Ton为开关管的导通时间,R为等效负载电阻。

  值得说明的是,上面(5)~(8)式并没有把分布电感Ls对输出电压的影响考虑在其中。

  由于分布电容Cds表示开关管内部的扩散电容,它的容量在Q1的关断过程中一直在改变(由大变小),因此,分布电感Ls和励磁电感产生的反电动势和对分布电容Cds进行充电时,其电压上升率并不是完全按正弦曲线规律变化。另外,由于励磁电感在数值上远比分布电感Ls大,因此,和Cs产生自由振荡的频率比Ls和Cs产生自由振荡的频率低很多。

  这里顺便指出,图6-b的波形是很难测量到的,因为分布电感Ls与分布电容Cs产生自由振荡的过程,基本上都在变压器内部的分布电感与分布电容之间进行,用仪器很难直接进行测量;但通过测量变压器次级线圈的波形,也可以间接测量图6-b中波形的振幅;而图6-c的波形可以直接进行测量,两者的振幅均与分布电感Ls的数值大小有关,还与等效电阻R的阻值有关。分布电感Ls的数值越大,振幅也越大,等效电阻R的阻值越大,振幅也越大。

  当自由振荡很强时,自由振荡会通过电磁辐射的形式给周边的电路或电子设备造成EMI干扰。这一点在进行开关变压器设计时务必要注意,应该尽量减小分布电感Ls的数值。

第三讲:对漏感与分布电容的影响进行数学分析

  图4中,当电源开关管Q1导通时,设输入电压为U,流过Ls的电流为
,流过Cs的电流为
,流过
的电流为
,流过R的电流为
,Cs存储的电荷为q,如果忽略Lds的作用,则列出回路方程为:

由于

;其中, 为Cs两端的电压。对电流进行微分即可得到:



  把(10)代入(9)式可得:

  (11)是一个非齐次二阶微分方程。我们知道,非齐次二阶微分方程的解等于其齐次微分方程的解与非齐次二阶微分方程特解的和,其齐次微分方程为:

  (12)式表示,电容Cs充满电后,输入电压等于0时电容两端电压或存储电荷随时间变化的过程。对(12)式求解,需要先求解其特征方程,其特征方程为:



由此求得其特征方程的解为:

  如果我们直接用(14)式来求解(10)式,结果将会变得非常复杂。由于,

,这也是电路产生谐振的基本条件,所以(14)式可以简化为:

由此求得:

  上式中,

为衰减指数因子,
为分布电容Cs与漏感Ls产生串联振荡的角频率。

  由此可以求出齐次微分方程(12)式的通解为:



  上式中,

为衰减系数,它是一个随时间变化的函数,A1 、A2 为待定系数。

  前面已经指出,齐次微分方程(12)式仅表示电容Cs充满电后,输入电压等于0时,电容两端电压或存储电荷随时间变化的过程,即,当t = 0时,q从最大值开始随时间变化的过程。但齐次微分方程(12)式并不完全表示电容Cs充、放电的全过程,我们仔细观察(17)式便知:在LC电路中,当t = 0时,如果q为最大值,电容一定是按余弦规律放电;如果q为最小值,则电容一定是按正弦规律充电。因此,我们还需要根据初始条件来对(10)非齐次微分方程式进一步求解。

  当电源开关管Q1导通时,输入电压才开始对电容Cs充电,Cs电容两端的电压不可能被充满电;因此,当 t = 0时,电容Cs两端的电压等于0,由此可知,(17)式中的 A1=0,因此,(17)式可以改写为:

  另外,非齐次微分方程(11)式的解应该等于齐次微分方程(12)式的通解与(11)式特解之和。为求特解,我们先来观察(11)和(12)式,分析它们之间的特征,然后用代入法来求解。

  设(11)式的特征解为:

,则求得,
;把结果代入(11)式,即可求得(11)式的特解为:



  上式中的电压

实际上就是电容Cs两端电压的半波平均值Upa。它等于输入电压U在漏感
与励磁电感 组成的串联电路中励磁电感
两端的分压的半波平均值。由于漏感
与励磁电感
相比非常小,因此,可以把
看成与输入电压U基本相等。
因此,非齐次微分方程(11)式的解为:



  上式中,A为待定系数,为正弦波的振幅,

为一个小于1的随时间减小的衰减系数。由于
等于电容Cs两端电压的半波平均值Upa,因此A的最大振幅就是
,即:A=
,由此可以求得(11)式微分方程的解为:




  (21)式是当电源开关管Q1导通时,分布电容Cs两端电压随时间变化的表达式,它由两部分电压组成,一部分是电容Cs两端电压的半波平均值

,由  (19)式表示;另一部分是正弦阻尼振荡,其最大振幅等于
是一个小于1的衰减系数,其中,
为衰减指数因子。

  由(21)式可以看出,等效负载电阻R的值和分布电容Cs的值越大,衰减指数因子的值就越小,而衰减系数的值就越接近1。

  对于一个功率大约为100瓦的开关变压器,其初级线圈的分布电容大约在100~2000微微法之间,如果把次级线圈的分别电容也考虑进去,总的分布电容可能要大一倍。假设开关变压器初级线圈的等效分布电容Cs为1000P,漏感ls为30uH,根据(16)式可求得振荡频率约等于900kHz。此振荡波形会迭加到变压器次级线圈的输出电压之中,使输出脉冲波形的前后沿产生严重失真,即:脉冲电压的前沿上升率降低,并产生过冲或振铃,脉冲电压的后沿产生过冲或振铃;当负载较轻时,振铃振幅很强,会造成很强的EMI辐射干扰。

  图6-b是当电源开关管Q1导通到关断时,分布电容Cs两端电压的波形。在图6-b中,当电源开关管Q1导通的瞬间,即t = t0~t1时刻,输入电压由0突然上升到U,但由于分布电感Ls的存在,分布电容Cs两端的电压

并不能像输入电压(方波)那样,由0突然升到U,因为电压的上升率不但要受到分布电感Ls的限制,同时也要受到电源开关管导通速度的限制,即:分布电容Cs开始被输入电压U充电时,其两端电压uc的上升率除了受到L、R、C等元件的时间常数影响外,还要受到电源开关管导通速度的影响。

  另外,LC谐振电路的振荡幅度对于正激式开关电源和反激式开关电源是不同的。对于正激式开关电源,当电源开关管Q1导通的时候,开关变压器要向负载输出能量,其等效负载电阻R的值相对比较小,衰减系数相对也比较小,因此,LC振荡被阻尼就比较厉害,振荡幅度下降就比较快。一般当第一个振荡周期过后,LC回路就很难再振荡起来。

  对于反激式开关电源,当电源开关管Q1导通的时候,开关变压器只是存储能量,没有能量输出,因此,等效负载电阻R的值相对比较大,衰减系数相对比较大(约等于1);此时,LC振荡的波形与等幅振荡的波形比较接近,其最大振荡幅度Um约等于分布电容Cs两端电压的半波平均值,即:分布电容Cs两端电压的峰值电压Up约等于输入电压U的2倍。请参考图6-b。

  我们从(21)式以及图3和图4可以看出:当电源开关管Q1导通时,分布电容Cs两端电压(也是励磁电感lv两端的电压),由一个最大振幅约等于输入电压U的正弦振荡电压与一个分布电容Cs两端电压的半波平均值

迭加。

  当电源开关管Q1关断瞬间,即t = t10~t11时刻,开关变压器初级线圈的电流回路突然被切断,原来存储于ls、Cs、lv中的能量,只能通过等效负载R和电源开关管的内阻(分布电容Cds)进行充电来释放。

  由于图3等效电路中的各元器件参数,在电源开关管导通期间(图4)和关断期间(图5)都不一样,因此,(21)式的计算结果只适用于开关管导通期间分布电容Cs两端电压,或通过(21)式求流漏感的电流。而当电源开关管Q1关断时,由于开关变压器次级线圈整流滤波电路被接通(反激式开关电源),等效负载电阻R突然会变小,此时,LC振荡主要在漏感和电源开关管的分布电容Cds组成的充放电回路中进行。

  由于Cds为开关管内部的扩散电容,属于电阻性质,当开关管完全关断之后,阻值为无限大,漏感产生的反电动势只会对Cds进行充电(通过开关管的内阻释放能量),而Cds不会对漏感进行反充电;因此,当漏感储存的能量释放完后,其后续振荡过程也不会再发生。

  当开关管完全关断时(图5),加于分布电容Cds两端的电压,正好是输入电压U与漏感产生的反电动势电压

和励磁电感
产生的反电动势电压
三者之和。因此,当开关管关断时,在开关管的D、S极之间会产生很高的尖峰脉冲电压。为了防止尖峰脉冲把开关管的漏极与源极击穿,在实际应用中,一般都要对开关管采取过压保护措施。

第四讲:单激式电源开关管的过压保护设计

         在单激式开关电源中,无论是正激式还是反激式开关电源,都要求对电源开关管采取过压保护,以防止当开关管突然关断瞬间,开关变压初级线圈产生的反激脉冲尖峰电压与输入电压进行迭加后,加到电源开关管的D、S极两端,把电源开关管击穿。

  为了防止电源开关管击穿,图7是一种抑制反激脉冲尖峰电压,对电源开关管具有过压保护作用的RCD尖峰脉冲吸收电路。之所以把它称为RCD尖峰脉冲吸收电路,因图中主要器件由R、C、D组成。

  为了分析方便,我们把开关变压器等效成一个理想的(漏感等于0的)开关变压器T与一个漏感Ls相串联,把开关变压器初级线圈N1产生励磁作用的电感

称为励磁电感;分布电容Cs为开关变压器初线圈的分布电容与次级线圈的分布电容等效到初线圈后,总的等效电容。
 

图7 开关电源的RCD尖峰电压吸收电路

  在图7中,当电源开关管Q1关断时,开关变压器初级线圈产生的反激电压脉冲(包括漏感产生的反激电压脉冲)将会与输入电压U迭加,同时加到电源开关管Q1的D、S极两端,此时,整流二极管D将导通,并对C进行充电;C的作用就是把加到开关管D、S极两端的尖峰脉冲电压加以吸收,以防止开关管被尖峰脉冲电压击穿;而R的作用是把C吸收尖峰脉冲电压产生的积累电荷泄放掉,为下一次尖峰脉冲的吸收做好准备,否则,经过多个尖峰脉冲电压吸收之后,电容积累的电荷将会越来越多,其两端电压也会越来越高,最后将会失去吸收尖峰脉冲的作用。

  值得注意的是,当电源开关管Q1关断时,由于变压器次级线圈整流滤波电路D2和C2的接入,开关变压器初、次级线圈的等效分布电容Cs相对于滤波电容C2来说,其作用将变得微不足道;此时,由于输出电压Uo通过变压器初、次级线圈的耦合和反射作用,使得变压器初级线圈产生的反电动势电压

完全被钳制在一个与次级输出电压Uo成正比的数值上,即:



  另外,由于开关管Q1两端的等效分布电容Cds并不是一个纯电容,而实际上是一个阻抗由小到大,其阻抗变化过程类似于电容充电的可变电阻,它只吸收能量,而不会释放能量。

  当它两端的电压Uds高于电容C两端的电压之后,即,整流二极管D导通之后,分布电容Cds的作用就完全变成了一个分流电阻Rds。此时,流过电阻Rds的电流越大,开关管的损耗也越大,适当选择图7中电容C的容量和电阻R的阻值,可以减小流过电阻Rds(开关管关断过程中的等效电阻)的电流,从而可以降低开关管的损耗。

  换一句话说,RCD尖峰脉冲吸收电路对开关管进行过压保护,就是通过电容C和电阻R对流过电源开关管(Rds)的电流进行分流来实现的;RCD尖峰脉冲吸收电路,不但可以降低开关管漏极与源极两端的峰值电压,还可以降低开关管的损耗。

电源开关管保护电路参数的计算

  从图7可以看出,当电源开关管Q1关断时,励磁电流在开关变压器铁芯中储存的磁能量将会通过开关变压初、次级线圈产生反电动势进行释放,次级线圈产生的反电动势将通过整流滤波电路进行平滑滤波后,再给负载提供功率输出;同时流过变压器次级线圈的电流也要给变压器铁芯进行消磁,使变压器铁芯中被磁化后的磁感应强度(最大磁通密度Bm)退回到被励磁电流磁化之前的值(剩磁Br)。

  但在实际消磁过程中,由于变压器初、次级线圈存在漏感,流过次级线圈N2的电流
并不能完全使变压器铁芯进行退磁,即,变压器铁芯中储存的,未被电流
退磁的一部分磁能量,将会通过漏感Ls产生的反激电压脉冲,在变压器初级线圈回路中产生电流来释放。此时,如果反激脉冲电压
泄放回路的等效电阻(图中未画出)很大,将会在漏感Ls或等效电阻R两端产生非常高的反激输出电压。在图3或图7中,电源开关管D、S极两端的等效电容Cds(实为等效电阻Rds),就相当于漏感Ls产生反激脉冲电压
泄放回路的等效电阻。
 
  前面已经分析过(参看图3和图6),当电源开关管Q1关断时,加到开关管D、S极之间的电压等于输入电压U与开关变压器初级线圈N1产生的反激输出脉冲电压(包括漏感产生的反激输出脉冲电压)之和;而开关变压器初级线圈N1产生的反激电压脉冲,正好等于其半波平均值与一个振荡波形迭加(参看图6-c)。

  可以证明,在开关电源电路中,当电源开关管突然关断时,反激输出尖峰高压脉冲主要是由变压器的漏感Ls产生的;漏感Ls产生的尖峰脉冲,首先迭加在一个幅度为开关变压器初级线圈N1反激输出电压的半波平均值之上,然后再与输入电压迭加;三个部分电压迭加后都一起加到电源开关管的D、S极之间。

  在反激式开关电源之中,开关变压器次级线圈一般都要与整流滤波电路连接,经整流滤波后输出的直流电压,其纹波电压非常小,其输出电压基本上就等于开关变压器次级线圈反激输出电压脉冲的半波平均值,或输出电压就是在半波平均值的基础上迭加一个纹波,当纹波电压很小时,输出电压就可以认为等于输出电压脉冲的半波平均值。

  关于变压器初、次级线圈反激输出电压的幅值以及半波平均值的定义与计算,请参考前面(5)~(8)式,不过需要注意的是,这些等式给出的结果,并没有把分布电容对电路的影响考虑进去,当把分布电容考虑进去时,电路相对要复杂一些。

  根据以上分析,以及(5)~(8)式计算结果,开关变压器次级线圈输出到整流二极管的反激输出电压脉冲的幅度正好等于输出电压脉冲的半波平均值(忽略整流二极管的压降以及分布电感Ls对输出电压的影响);通过电磁感应,次级电压脉冲幅度等效到初级线圈的电压脉冲幅度也是半波平均值,即:

为初级线圈电压脉冲的半波平均值,
为次级线圈电压脉冲的半波平均值,n为变压器次级线圈与初级线圈的电压比。

  在正激式开关电源之中,开关变压器必须要设置一个次级反馈线圈,反馈线圈输出的反激电压脉冲经过整流之后,再反馈回工作电压的输入端,这相当于反馈线圈输出的反激电压脉冲高出输入电压部分完全被限幅;因此,在反馈线圈输出的电压中基本不含尖峰脉冲电压,其等效到初级线圈输出的反激电压也不含尖峰脉冲电压。

  由此可知,当电源开关管关断时,无论是反激式开关电源或者是正激式开关电源,在无漏感的情况下,开关变压器初级线圈反激输出的电压脉冲幅度都基本等于半波平均值,从而可以间接证明:开关变压初级线圈产生的高压反电动势是由变压器初级线圈的漏感Ls产生的。

  由(5)~(8)式可知,变压器初、次级线圈反激输出电压的幅值主要与电源开关管的导通时间Ton的大小和电流回路中泄放电阻的大小有关,还与充电回路的电容大小有关;当电流回路中泄放电阻的阻值很大或者开路时,漏感产生的反激输出电压脉冲幅度是很高的,但其半波平均值与泄放电阻的阻值大小几乎不相关,只与脉冲宽度相关,请参看(5)~(8)式。
在图7中,当电源开关管Q1关断时,如果忽略整流二极管的电压降,电容器C两端的电压

,就等于变压器初级线圈中励磁电感
与漏感
产生的感应电动势(反激电压)
之和,即:

  上面两式中,

为电容器C两端的电压,
分别为变压器初级线圈励磁电感
和漏感
产生的感应电动势;
为变压器次级线圈N2反激输出电压的半波平均值,
为电容器C2两端的纹波电压,n为变压器次级线圈与变压器初级线圈的变压比。

  假设变压器初级线圈的等效电感为L,

,当电源开关管Q1接通时,流过变压器初级线圈的电流为:

  在开关管关断瞬间,流过变压器初级线圈的电流达最大值,其值为:

  上两式中,

为流过变压器初级线圈的电流,
为流过变压器初级线圈电流的最大值;
为流过变压器初级线圈电流的初始值,即:当t = 0时(开关管关断前瞬间)流过变压器初级线圈的电流,
大小与电源开关管的占空比有关,当占空比等于或小于0.5时,
等于0。

  由此求得开关变压器初级线圈励磁电感

和漏感
存储的能量分别为:

  上面式中,

分别为开关变压器初级线圈励磁电感lv和漏感ls存储的能量。其中,
是需要RCD尖峰脉冲吸收电路进行吸收的能量;而励磁电感存储的能量,则不需要RCD尖峰脉冲吸收电路进行吸收,如果吸收了,开关电源的工作效率将会降低,因为
是用来为负载提供能量输出的。

  根据以上分析,在理想的情况下,漏感

存储的能量应该等于电容C储存的能量与电阻R损耗的能量以及电源开关管损耗的能量,三者的总和。即:

  (28)式中,
为电源开关管由导通到完全关断期间电容器C储存的能量,
为电源开关管由导通到完全关断期间电阻R损耗的能量,
为电源开关管由导通到完全关断期间漏极电流(逐步减小)对电容器C充电产生分流作用所做的功。
如果不考虑电阻R对电容器C充电时产生的分流作用,以及开关管由导通到完全关断期间漏极电流(逐步减小)对电容器C充电时产生的分流作用,即:
,则(28)式可以改写为:



  上面2式中,
为电容器被充电前的电压
(最低电压),
为电容器被充满电后的电压
(最高电压)。

  从(30)式中可以看出,

正好是电容器两端电压的纹波电压
,即:纹波电压
;而
正好等于电容器两端电压半波平均值
的2倍,即
。 因此(30)式又可以改写为:

  (31)式中,

为电容器C两端电压的半波平均值,
电容器C每次充电储存能量的增量,
为电容器C充电时的电压增量,其值正好等于纹波电压
,即:

  当电容器C进行第一次充电时,

,并且
有最大值
。因此,(30)式又可以写为:

  仔细观察(31)式和(32)式可知,当电容器C的积累电荷很小时,电容器C两端电压的半波平均值就正好等于或略大于纹波电压的两倍,即:

。为了计算方便,在计算过程中,我们可以令电容器C两端电压的半波平均值约等于纹波电压的两倍来进行计算。即:

把(25)式代入(32)式,并注意到当D ≤ 0.5时,

,可得:

  如果考虑电阻R对电容器C充电时的分流作用,以及开关管由导通到完全关断期间漏极电流(逐步减小)对电容器C充电时的分流作用,则(33)和(34)式可以改写为:

  (35)和(36)中,r为一个与电阻R大小有关和与开关管D-S极之间分布电容参数有关的分流系数,0 ≤ r ≤ 1 。分流系数表示:当考虑电阻R对电容器C充电的分流作用,以及开关管由导通到完全关断期间,漏极电流对电容器C充电的分流作用时,R和D-S极分布电容对电容器C充电产生的分流作用为(1 - r)倍。当R开路和D-S极分布电容等于0时,分流系数r = 1 。

  在实际应用中,总是要对计算结果预留一定的余量;如果令(35)和(36)式中的分流系数r = 1,即:当使用(35)和(36)式计算电容器两端的纹波电压或电容器的容量时,其计算得到的结果就相当于已经预留了(1 - r)倍的余量。因此,我们可以用(35)和(36)式来计算电容C的容量以及其两端纹波电压

的极限值。

  从(35)式可以看出,开关管每关断一次,电容器C两端的电压就要增加一个电压增量

;为了不让电容器C两端的电压不断增加,必须要在开关管导通期间,把电容器C每次充电新增的电荷通过R释放掉;即,在开关管每次关断之前,电容器C两端的电压都要通过电阻R释放掉一部分,使下降的电压正好与电容器C充电时新增的电压
在数值上相等,符号相反;即下降的电压为

  由此可知:电容器C容量的选取,对于开关管每次关断时所吸收的能量多少至关重要,如果容量选得太小,当电容器第一次充电产生的电压增量

与输入电压迭加后,很可能就会超过电源开关管的耐压值;当开关管导通之后,电容器C开始对电阻R放电,其后,电容器每次充电和放电的电压增量
的多少,均由电阻R的阻值来决定。

  当电容器经过多次充、放电之后,电容器两端的电压(最大值)相对要比第一次充电产生的电压(最大值)略有升高,电容器两端电压的半波平均值

也将略有升高;但电容器两端的最高电压
还是不能超过电源开关管的最高耐压与输入电压之差。

  由图7可以看出,电容器C两端电压的最大值

等于变压器初级线圈励磁电感
产生的感应电动势
和漏感
产生的感应电动势
,两者之和(即变压器初级线圈的反激输出电压)的半波平均值,与电容器C充电时产生的电压增量
的二分之一,三者迭加。即:

  (37)式中,

为电容器两端电压的最大值,
为开关变压器初级线圈反激输出电压的半波平均值,
为励磁电感
产生感应电动势
的半波平均值,
为漏感
产生感应电动势
的半波平均值;
为电容吸收尖峰脉冲电压的增量(与纹波电压
相等)。实际上,当电容器充放电达到动态平衡之后,电容器两端电压的半波平均值
与开关变压器初级线圈反激输出电压的半波平均值
应该完全相等。

  当漏感
储存的能量完全被吸收时,漏感
产生感应电动势
的半波平均值
应该等于
。把
代入(37)式,电容器C两端的最大电压
又可以写为:


  根据上面分析,如果忽略整流二极管D的正向压降,电源开关管D-S两极之间的最高电压
则可由下式决定:

  (39)和(40)式中,

为开关管D-S极两端的最高电压,
为输入电压的最大值,为电容器两端电压的最大值;
为开关变压器初级线圈反激输出电压的半波平均值,
为励磁电感
产生感应电动势
的半波平均值,
为漏感
产生感应电动势
的半波平均值;
为电容吸收尖峰脉冲的电压增量。
可根据(5)~(8)式求得:

  (41)式中,U为电源输入电压,Ton为电源开关管的导通时间,Toff为电源开关管的关断时间,D为占空比。而

可根据漏感
与开关变压器初级线圈的电感L的比值k求得。

(42)和(43)式中,

为漏感
与开关变压器初级线圈的电感L的比值。

当电源开关管Q1由关断转为接通时,电容器C两端电压将通过R按指数衰减规律进行放电。即:

在电源开关管Q1由导通转为关断的瞬间,电容器C两端的电压应该为最小值

。其结果可由下式求得:

在数值上完全相等时,
还可以写成:

对(45)和(46)式进行求解得:

  (48)和(49)式就是我们用来计算RCD尖峰脉冲吸收电路参数,电阻R、电容器C的容量、电容吸收尖峰脉冲的电压增量

、以及开关变压器初级线圈反激输出电压的半波平均值
和开关管导通时间Ton等参数的关系式。

  (48)和(49)式中,R为RCD尖峰脉冲吸收电路中释放电阻的阻值,C为吸收尖峰脉冲电容器的容量,Ton为电源开关管的导通时间;

为电容吸收尖峰脉冲电压的增量(其值等于纹波电压
),
为开关变压器初级线圈反激输出电压的半波平均值;
的值可根据(41)式求得。在使用(48)和(49)式之前,还需要先利用(33)和(34)式或(35)和(36)式计算出电容器C的容量,以及根据开关管的最大耐压BVm定义好电容器C吸收尖峰脉冲电压增量
的数值。

  下面我们来讨论一下,电容器电压增量数值的选取。

  前面已经分析过,当电源开关管Q1关断时,加到开关管D、S极之间的电压等于输入电压U与开关变压器初级线圈N1产生的反激输出脉冲电压(包括漏感产生的反激输出脉冲电压)之和,参看(39)、(40)式。在图7中,开关变压器初级线圈N1产生的反激电压脉冲的最大值,正好等于RCD尖峰脉冲吸收电路中电容器两端电压的最大值

,而
可以根据(37)、(38)、(39)、(40)式求得。

第五讲:RCD尖峰脉冲吸收电路参数计算举例

  反激式开关变压器的漏感一般都比较大,漏感与初级线圈电感之比,大多数都在2~5%之间。漏感的大小主要与变压器初、次级线圈的绕法、铁芯和骨架的结构,以及气隙大小等参数有关,还与磁通密度取值的大小有关,因为磁通密度取得越大,导磁率就会越小,漏感相对也要增大。漏感小于2%或大于15%的开关变压器,其结构一般都比较特殊。

  开关变压器初级线圈电感量的大小,主要与开关电源的工作频率有关,还与工作电压和输出功率的大小有关。一般输出功率越大,工作频率就越低,电感量相应也要增大;而工作电压越高,电感量也越大。一般工作频率为30~50kHz,工作电压为AC110V~220V的开关变压器,其初级线圈的电感量大约为:300~1000微亨,漏感大约为:10~100微亨;计算时,可按3~6%的比例来取值进行估算。例如:L=1000uH,则可取 Ls = 30~60uH。

  开关变压器初级线圈的电感L和漏感Ls的大小可以用仪表直接测量。测量开关变压器初级线圈漏感的最简单方法是把开关变压器次级线圈两端短路,然后再测量开关变压器初级线圈的电感,即漏感。不过测量时不要选择测试频率太高,因为开关变压器初级线圈的分布电容对测量结果影响很大。

尖峰脉冲吸收电容器容量的计算

  要计算尖峰脉冲吸收电容器容量,首先要计算流过变压器初级线圈电流的最大值。计算流过变压器初级线圈的最大电流Im可根据开关电源的最大输入功率Pm来估算。电流Im可根据开关电源的最大输入功率Pm来估算。根据(26)式,当输出功率一定时,输入电压在一定的范围内,流过变压器初级线圈的最大电流Im和输出电压Uo基本是稳定的;变压器初、次级线圈反激输出电压的半波平均值也基本是稳定的,与输入电压的大小无关,但对应不同的输入电压必须对应不同的占空比,参看(41)、(42)式。

  当流过开关变压器初级线圈的最大电流确定之后,尖峰脉冲吸收电容器容量以及电容充电时电压增量的数值就可以按(33)~(36)式进行计算。

  在实际应用中,电容器C吸收尖峰脉冲电压增量的数值,与开关管的耐压BVm的参数大小有关。假设电源开关管的耐压BVm为650V,如果预留20%的余量,那么,正常工作时,加到开关管D-S极之间的最高脉冲电压

只能达到520Vp。而在520Vp的
电压之中,电容器C吸收尖峰脉冲电压增量
(等于
)这一项是要首先考虑的。假设
等于
电压的20%,即:
=104V,当最高输入电压为360V时(对应交流输入电压为AC253V),根据(39)式可求得:

  假设漏感

与开关变压器初级线圈的电感L的比值K为5%,根据(42)式可求励磁电感产生的反击输出电压
的半波平均值
为:

  大多数反激式开关电源的最大输出功率都在100W一下,因为用于反激式开关电源功率损耗大于10W的电源开关管种类很少,如需要较大的输出功率,一般都选用半桥式或全桥式双激式开关电源。

  假设开关电源的最大输出功率为50W,当占空比D = 0.5时,变压器初级线圈的反激输出电压的半波平均值

与输入电压U相等,即,
=U=108V,
=102.6V,而流过变压器初级线圈的最大电流Im等于平均电流的4倍,由此可求得最大输入电流Im = 1.95A ;假设开关变压器初级线圈的电感量L=1000uH,漏感Ls = 50uH。把这些参数代入(34)式,可求得:

  当考虑电阻R对电容器C充电的分流作用,以及开关管由导通到完全关断期间,漏极电流对电容器C充电的分流作用时,根据(36)式,假设分流系数r = 0.5 ,则(52)式还可改写为:

  上面(52)和(53)式的计算结果,可作为对RCD尖峰脉冲吸收电路进行试验时,选择电容器容量的上限和下限,最终结果需要通过电路试验来决定。

  试验时,以输入电压和输出功率的最大值为条件,然后,由大到小,选择不同容量的电容器做试验,用示波器观测电源开关管D-S两端的电压,直到Uds与最高耐压BVm两者之差能满足余量要求时,为最佳结果。

  这里顺便说明一下,为什么(53)式中的分流系数取值为0.5,而不是其它数值。因为,分流系数r的取值范围是0~1,它是一个动态系数,它的大小,除了与输入电压和输出功率和RCD电路中电容、电阻的大小有关外,还与开关管的关断时间,以及电流大小有关系。

尖峰脉冲吸收电阻阻值的计算

  纹波电压

的大小与释放电阻R的大小还有关。一旦电容器的容量确定之后,释放电阻R的大小就可以根据(45)~(49)来计算。根据(38)式,电容器两端最高电压为:

根据(46)式,电容器两端最低电压为:

把(54)和(55)式的结果代入(49)式,即可求出RC的值:


  当RC的值与开关管导通时间Ton完全相等时,(46)式的值正好等于0.37,与(56)式的结果非常接近。或者当纹波电压
=100V时,由(56)式计算得到的结果正好等于0.37,两者误差小于4%,因此,可以认为RC的值与开关管导通时间Ton完全相等,以此为条件来计算RC的值。即:

  把由(52)和(53)式求出电容器C的结果,以及根据(25)式求出的Ton值,代入(57)式后即可求出电阻R的值。

  由于,当占空比D小于0.5时,流过电感线圈的电流出现断流(平均值),这也会对分流系数产生很大的影响,使计算非常复杂;为了简单,我们在计算开关管的导通时间Ton时,还是以占空比等于0.5为例。

  当占空比等于0.5时,对应的输入电压U为108V,对应的最大电流Im为1.95A,假设开关变压器初级线圈的电感量L=1000uH,根据(25)式,可求得Ton的值为:

  把(53)、(58)式的计算结果:C = 4395P,Ton = 18uS ,代入(57)式:

即:计算结果为:C = 4395P ; R = 4096 欧姆。

  试验结果表明,(53)和(59)式的计算结果是合理的。当开关变压器初级线圈的漏感为5%时,其反激输出电压的平均功率也为5%(Pa = 2.5W);由于电容器C两端电压的半波平均值为108V,当漏感输出的功率完全被电阻R吸收时,电阻R的最佳值为4.7K,而根据(59)式计算的结果为4096 Ω(2.85W),与精确值2.5瓦相差0.35W。这正是把(36)式设为电容器取值范围下限,对应(53)和(59)所求得的结果,即由(59)所求得的结果还是一个保守的结果,但其离精确值已经非常近。由此可知,要提高开关电源工作效率,必须要降低开关变压器的漏感。

  当输入电压为最大值(AC260V)的时候,其占空比大约只有0.3左右,因此,电容器充电的时间要比放电的时间长很多;但在电容器还充电期间变压器初级线圈会出现断流,这相当于电容器会提前放电,其结果与占空比等于0.5时的结果基本相同。但做试验时,最好还是以输入电压为最大值时为准。如电阻R的值取得小些,相当于分流系数r降低,这对降低开关管的关断损耗是有好处的,因为,开关变压器漏感储存的磁能量,一部分是通过开关管关断时产生的损耗来释放的,另一部分则是通过RCD回路中的电容充电和电阻分流来进行释放;但电阻的阻值取得太小,又会从励磁电感线圈吸收能量,降低开关电源的工作效率。

  在反激式开关电源中,很多人用一个稳压二极管来代替RCD电路中的电阻和电容,用以对开关管进行过压保护,如图8所示。从原理上来说,这种方法对开关管的过压保护是有效的,但实践证明,这种保护方法可靠性很差。因为,当开关管关断时,1.95A(以上面计算结果为例)的电流流过150~200V的稳压二极管,其产生的瞬时功率高达290~390W,这么大的瞬时功率很容易使稳压二极管局部损伤,当损伤程度达到某个临界点后,就会产生热击穿,造成稳压二极管永久失效。

图8

  另外,当稳压二极管还没击穿之前,它不会对开关管分流,从而大大增大开关管的关断损耗;并且,流过稳压二极管的电流还产生很大的电流突跳,很容易产生高频电磁辐射。因此,对开关管进行过压保护,在安全及EMC技术性能方面,选用RC要远远优于选用稳压二极管。


本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
变压器的漏感与分布电容影响分析
开关电源中如何通过改善变压器工艺提高开关电源可靠性
什么是高频变压器
电源开关管的过压保护电路
寄生电容对串联谐振电容器充电电源特性的影响
跟电源专家陶显芳学电源技术(完):RCD尖峰脉冲吸收电路参数计算举例
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服