打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
Minitab统计分析(中)

 蒲公英杂志

相关链接:

Minitab统计分析(上)


制程能力之分类

MINITAB 能力分析的选项(计量型)

1.能力分析   (正态)

2.能力分析   (组间/组内)

3.能力分析   (非正态)

4.能力分析   (多变量正态)

5.能力分析   (多变量非正态)

6.能力分析   (二项)

7.能力分析   (Poission)

8.Capability Sixpack  (正态)

9.Capability Sixpack  (组间/组内)

10.Capability Sixpack  (非正态)

一.能力分析   (正态)

该命令会划出带理论正态曲线的直方图,这可直观评估数据的正态性。输出报告中还包含过程能力统计表,包括子组内和总体能力统计。

二.能力分析   (组间/组内)

1.该命令会划出带理论正态曲线的直方图,可以直观评估数据的正态性。

2.该命令适用于子组间存在较大变差的场合。输出报告中还包含过程能力统计表,包括子组间/子组内和总体能力统计。

三.能力分析  (非正态)

该命会会划出带非正态曲线的直方图,这可直观评估数据是否服从其他分布。输出报告中还包含总体过程总能力统计。

四.能力分析 (多变量正态)

五.能力分析 (多变量非正态)

--上述两个命令用于对多个变量进行分析

制程能力分析做法

STEP1决定Y特性

STEP2决定Y特性

STEP3决定Y特性

STEP4决定Y特性

STEP5决定Y特性

练习

输入数据

Select: 统计 >质量工具 > 能力分析(正态)

输入选项

选择标准差的估计方法

选项的输入

以Cpk, Ppk结果的输出


Cp:过程能力指数,又称为潜在过程能力指数,为容差的宽度与过程波动范围之比。

Cp=(USL-LSL)/6σ    其中:σ=R/d2

Cpk:过程能力指数,又称为实际过程能力指数,为过程中心µ与两个规范限最近的距离。

min{USL- µ, µ-LSL}与3σ之比.

Cpk= min{USL- µ, µ-LSL}/ 3σ  其中:σ=R/d2

Cpm:过程能力指数,有时也称第二代过程力指数,质量特性偏离目标值造成的质量损失。

Cpm =(USL-LSL)/6σ′   其中:σ́2= σ2+(µ-m)2

Cpmk=Cpk/√1+[(µ-m)/σ]2    Cpmk称为混合能力指数.



Pp与Ppk:过程绩效指数,计算方法与计算Cp和Cpk类似,所不同的是,它们是规范限与过程总波动的比值.过程总波动通常由标准差s来估计。


过程能力与缺陷率的关系:

1.假如过程中心µ位于规范中心M与上规范限USL之间,即M≤ µ ≤ USL时:

 p(d)=Φ[-3(2Cp-Cpk)]+Φ(-3Cpk)

2 .假如过程中心µ位于规范中心M与下规范限LSL之间,即LSL≤ µ ≤ M时:

 p(d)=Φ[-3(1+K)Cp]+Φ[-3(1-K)Cp]


以Zbench方式输出


结果说明:

ZUSL=(USL- µ)/σ

ZLSL=(µ -LSL)/σ

Z=(USL- LSL)/2σ 或  Z=3Cp

双侧规范下综合Sigma Level Zbench需通过总缺陷率进行折算,使用Sigma Level Z来评价过程能力的,,优点是Z与过程的不合格率p(d)或DPMO是一一对应的。

练 习:

请打开Data目录下的 Camshaft.mtw,以 Zbench方式输出。

填入参数

结果输出


通过DPMO求Sigma Level

Select :Calc–Calculator

Select :Calc–Probability Distribution-Normal

结果输出


Capability Analysis (Between/Within)


Capability Analysis (Nonnormal)

此项的分析是用在当制程不是呈现正态分布时所使用.因为如果制程不是正态分布硬用正态分布来分析时,容易产生误差,所以此时可以使用其他分布来进行分析,会更贴近真实现像.


练 习

请使用同前之数据来进行分析。

上规格:103

下规格:97

规格中心:100


输入相关参数

Select: Stat >Quality Tools > Capabilty Analysis(Nonnormal)

填入选项要求

结果图形


正态分布适用性的判定:

可以使用Stat>basic statistic>normality test,但数据要放到同一个column中,所以必须针对前面的数据进行一下处理。

数据调整

填写选项

结果输出

结果输出(加标0.5概率


计量型制程能力分析总结:

1.一般的正态分布使用Capability Analysis (Normal)。

2.如果是正态分布且其组内和组间差异较大时可用Capability Analysis (Between/Within),当非正态分布时则可以使用Capability Analysis (Nonnormal)。

Capability Sixpack (Normal):

复合了以下的六个图形:

Xbar

R

原始数据分布(plot)

直方图

正态分布检定

CPK, PPK

练习:

请以前面的数据来进行相应的Capability  Sixpack (Normal)练习

Select:Stat >Quality Tools > Capabilty Sixpack(Normal)


输入各项参数

选定判异准则

选择标准差估计方法

考虑可选择项

结果输出

Capability Sixpack (Between/Within):

复合了以下的六个图形

Individual

Moving Range

Range

直方图

正态分布检定

CPK, PPK


同前练习及结果

Capability Sixpack (Nonnormal):

复合了以下的六个图形

Xbar

R

原始数据分布

直方图

正态分布检定

CPK, PPK

结果输出


二项分布制程能力分析:

二项分布只适合用在

好,不好

过,不过

好,坏

不可以用在0,1,2,3等二项以上的选择,此种状况必须使用泊松分布。

示例:

数据在Data目录下的Bpcapa.mtw中

Select : Stat >Quality Tools >Capabilty >Analysis > Binomial

填好各项的参数

选好控制图的判异准则


泊松分布制程能力分析

泊松分布只适合用在计数型,有二个以上的选择时.例如可以用在外观检验,但非关键项部份0,1,2,3等二项以上的选择,此种状况必须使用泊松分布。


示例:

数据在Data目录下的Bpcapa.mtw中

Select:Stat >Quality Tools >Capabilty Analysis(Poisson)

填好各项的参数

结果及输出


基础统计

描述性统计:

Select:Stat >Basic Statistics >Display descriptive  statistics


假设想对两组学生的身高进行描述性统计以便比较,数据如下:


假设检验

广告宣传的虚假性:

手机电池的使用寿命不是按年来计算的,而是按电池的充放电次数来计算的.镍氢电池一般可充放电200-300次,锂电池一般可充放电350-700次。某手机电池厂商宣称其一种改良产品能够充放电900次,为了验证厂商的说法,消费者协会对10件该产品进行了充放电试验.得到的次数分别为891,863,903,912,861,885,874,923,841,836。


广告宣传是虚假的吗


假设检验的原理:

假设检验的原理是逻辑上的反证法和统计上的小概率原理。

1.反证法:当一件事情的发生只有两种可能A和B,如果能否定B,则等同于间接的肯定了A.

2.小概率原理:发生概率很小的随机事件在一次实验中是几乎不可能发生的。


假设检验的原理(续):

由于个体差异的存在,即使从同一总体中严格的随机抽样,X1、X2、X3、X4、、,也不尽不同

它们的不同有两种(只有两种)可能:

1.分别所代表的总体均值相同,由于抽样误差造成了样本均值的差别,差别无显著性。

2.分别所代表的总体均值不同,差别有显著性。


假设检验的几个步骤假设检验的几个步骤:

假设检验的一般步骤,即提出假设、确定检验统计量、计算检验统计量值、做出决策。


提出假设:

在决策分析过程中,人们常常需要证实自己通过样本数据对总体分布形式做出的某种推断的正确性(比如,总体的参数θ大于某个值θ0),这时就需要提出假设,假设包括零假设H0与备择假设H1。


零假设的选取:

假设检验所使用的逻辑上的间接证明法决定了我们选取的零假设应当是与我们希望证实的推断相对立的一种逻辑判断,也就是我们希望否定的那种推断。


零假设的选取(续一

同时,作为零假设的这个推断是不会轻易被推翻的,只有当样本数据提供的不利于零假设的证据足够充分,使得我们做出拒绝零假设的决策时错误的可能性非常小的时候,才能推翻零假设。


零假设的选取(续二

所以,一旦零假设被拒绝,它的对立面——我们希望证实的推断就应被视为是可以接受的。


构造检验统计量


计算检验统计量值:

把样本信息代入到检验统计量中,得到检验统计量的值。


做出决策:

1. 规定显著性水平α,也就是决策中所面临的风险

2.决定拒绝域(critical region)和判别值(critical value)

3.判定检验统计量是否落在拒绝域内

4.得出关于H0和关于H1的结论


显著性水平:

显著性水平α是当原假设正确却被拒绝的概率,通常人们取0.05或0.01.这表明,当做出接受原假设的决定时,其正确的可能性(概率)为95%或99%。


判定法则:

1.如果检验统计量落入拒绝域中,则拒绝原假设

2.如果检验统计量落入接受域中,则我们说不能拒绝原假设

注意:判定法则2的含义是指我们在这个置信水平下,没有足够的证据推翻原假设;实际上,如果我们改变置信水平或样本数量就有可能得到与先前相反的结果。


零假设和备择假设


单侧检验(one-tailed hypothesis):

某种果汁的包装上标明其原汁含量至少为90%,假定我们想通过假设检验对这项说明进行检验。


检验的方向性:

如果要检验的问题带有方向性,如灯泡寿命、电池时效、头盔防冲击性等数值是越大越好;零件废品率、生产成本等数值则是越小越好,这类问题的检验就属于单侧检验。


单侧检验:


单侧检验的例子:

例1:一家食品公司广告说他的一种谷物一袋有24千克.消费者协会想要检验一下这个说法。他们当然不可能打开每袋谷物来检查,所以只能抽取一定数量的样品。取得这个样本的均值并将其与广告标称值作比较就能做出结论。请给出该消费者协会的零假设和备择假设。


单侧检验的例子(续一


单侧检验的例子(续二


双侧检验:

一些产品某一项指标必须满足在某一个范围内,如精密零件的尺寸和重量,保险丝适用的电流强度等等,这类问题的检验属于双侧检验,图例:拒绝域和临界值。


两类错误:

假设检验是基于样本信息做出的结论,而我们知道样本只是代表了总体的一部份信息,因此必须考虑发生误差的概率。

H0为真时我们拒绝H0的错误称为第I类错误,犯这种错误的概率用α来表示,简称为α错误或弃真错误;当H0为伪时我们接受H0的错误称为第II类错误,犯这种错误的概率用β来表示,简称为β错误或取伪错误。


两类错误出现的场合

两类错误发生的概率

两类错误的关系

假设检验的Minitab实现

输出结果

单样本t检验(1-Sample t

输出结果

双样本t检验(2-Sample t

输出结果

成对样本t检验(Paired t

输出结果

单样本比例检验(1 Proportion

输出结果

双样本比例检验(2 Proportion

输出结果


其它注意事项:

选择假设检验方法要注意符合其应用条件;当不能拒绝H0时,即差异无显著性时,应考虑的因素:可能是样品数目不够;单侧检验与双侧检验的问题。


正态性检验(Normality test

填入参数

基于ECDF检验的输出结果

基于相关分析检验的输出结果

基于相关卡方检验的输出结果


小组讨论与练习

报纸报导某地汽油的价格是每加仑115美分,为了验证这种说法,一位学者开车随机选择了一些加油站,得到某年一月和二月的数据如下:

一月:119 117 115 116 112 121 115 122 116 118 109 112 119 112 117 113 114 109 109 118

二月:118 119 115 122 118 121 120 122 128 116 120 123 121 119 117 119 128 126 118 125

1.分别用两个月的数据验证这种说法的可靠性;

2.分别给出1月和2月汽油价格的置信区间;

3.给出1月和2月汽油价格差的置信区间.


方差分析


本章目标

1.理解方差分析的概念

2.知道方差分析解决什么样的问题

3.掌握单因素和多因素方差分析的原理

4.会利用Minitab对实际问题进行方差分析

5.能够对方差分析的结果作出解释


方差分析的引入:

假设检验讨论了检验两个总体均值是否相等的问题,但对于多个总体的均值比较,如果仍用假设检验,就会变得非常复杂.


方差分析的引入(续一)

方差分析(ANOVA:analysis of variance)能够解决多个均值是否相等的检验问题。方差分析是要检验各个水平的均值是否相等,采用的方法是比较各水平的方差。


方差分析的引入(续二)

某汽车厂商要研究影响A品牌汽车销量的因素.该品牌汽车有四种颜色,分别是黑色、红色、黄色、银色,这四种颜色的配置、价格、款式等其他可能影响销售量的因素全部相同。从市场容量相仿的四个中等城市收集了一段时期内的销售数据,见下表。

方差分析的引入(续三)

方差分析实际上是用来辨别各水平间的差别是否超出了水平内正常误差的程度.观察值之间的差异包括系统性差异和随机性差异.


方差分析的引入(续四)

怎样得到F统计量

怎样得到F统计量

F分布的特征

F分布的特征(续)


方差分析的前提


单因素方差分析

例1:我们要研究一家有三个分支机构的公司各分支机构的员工素质有无显著差异,已邀请专业的人力评测单位对每一分支机构的员工进行了评测,结果以百分制的分数给出,每一机构抽取五位员工的结果如下表:


检验方差是否一致

在方差分析之前,我们可利用Minitab对数据作方差一致性检验Minitab能够读取的数据格式与上表给出的格式不同,我们必须把数据转化为Minitab能够理解的形式。

具体做法是:将所有变量值输入工作表的第一列,对因素进行编码,按照一定的顺序编为1、2、3...,输入后面几列.对本例:

1.先将素质测评的得分输入工作表列一;

2.三个分支分别编码为1、2、3,对应于变量值填入第二列;


方差一致性检验














方差分析表

上面的计算结果可以很方便的用方差分析表来描述.下面是用Minitab软件得到的输出结果,p值大于0.05,不能拒绝原假设。即认为三个分支机构员工素质评分无显著差异。



多因素方差分析:

1.方差分析也可以同时分析两个或两个以上的因素,这就是多因素方差分析。

2.有的实际问题需要我们同时考虑两个因素对实验结果的影响,例如在例1中,除了关心分支机构的差别外,我们还想了解不同薪酬水平是否和员工素质有关。

3.同时对这两个因素进行分析,就属于双因素方差分析,通过分析,我们可以知道究竟哪一个因素在起作用,或者两个因素的影响都不显著。


不同配方的水泥硬化时间的分析:

例 2:特殊环境如水下、高温环境中,建筑材料对水泥的硬化时间有严格的要求。现欲比较几种配方的水泥在不同温度下的硬化时间,其他条件相同,试验结果如下表:

用Minitab作双因素方差分析

用Minitab作双因素方差分析(续一

出现Two-way Analysis of Variance对话框后:

用Minitab作双因素方差分析(续二

结果的进一步解释:

我们将Minitab输出的方差分析表转换为下表其中F临界值为手工加入双因素方差分析: C2, C3

方差分析表:

结果的进一步解释:

C2是配方变量,F<Fcr,所以不能拒绝零假设,即认为不同配方的反应时间大体一致,不存在显著差异。

C3是温度变量, F>Fcr,所以拒绝零假设,即认为不同温度的反应时间不一致,存在显著差异。

多变量图分析

多变量图输出

本例中,四种反应温度对应不同水泥配方的反应时间差异较大,说明水泥反应温度与配方有交互作用,与四种温度下最快的反应时间对应的编号分别为:3,2,2,2

若要将因子间的交互作用和其他因子作用量化,可以进一步采用方差分析或一般的线性模式等方法。

结果输出

结果输出(续)

均值分析(Analysis of Means)

可用于测试各均值的互等性

Select :Stat-ANOVA-Analysis of Means

填入参数

结果输出

平衡数据方差分析

  (Balanced ANOVA

Select :Stat-ANOVA- Balanced ANOVA   

结果输出

通用线性模型

General Linear Model

Select :Stat-ANOVA- General Linear Model

填入参数

全嵌套数据方差分析

 (Fully Nested ANOVA

填入参数

结果输出

平衡数据多响应变量方差分析

         (Balanced MANOVA

Select :Stat-ANOVA- Balanced MANOVA  

点击“Results”对话框,选中下图复选框

结果输出

结果输出(续1

结果输出(续2

通用多响应变量方差分析

       (General MANOVA

Select :Stat-ANOVA- General MANOVA

填入参数

结果输出

结果输出(

……未完……

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
【实例讲解】单因素方差分析(One-way Anova)
Minitab 教程之二《CPK 过程能力分析 》
10个常用的六西格玛统计工具
t检验、u检验、卡方检验、F检验、方差分析
假设检验之F检验-方差分析
R语音实战笔记
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服