打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
混沌与分形(二):分形的奇迹——分数维的曲线

混沌的秘密,不可思议地隐藏在分形的世界里。

分形(fractal),该术语最早是由美国数学家曼德勃罗(Mandelbrot)于1973年提出。

曼德勃罗(1924-2010)(图片来源网络)

在其名著《大自然的分形几何学》中,曼德勃罗开创了分形几何学。分形几何以及与其相关的非线性理论,很快就显示出强大的生命力,其影响迅速遍及科学和社会的每个角落。许多学科中的难题,因为分形的介入而焕然一新。如梦初醒的科学家才发现,原来分形的身影已经在世界上默默存在了数亿年,从地球诞生始就向大自然昭示其深邃的奥秘。

植物的分形(图片来源:网络)

生活中常见的花菜、雷雨过后的闪电、凛冬漫天飞舞的雪花、贝壳身上的螺旋图案,小至各种植物的结构及形态,遍布人体全身纵横交错的血管,大到天空中聚散不定的白云、连绵起伏的群山,它们都或多或少表现出分形的特征。乍看起来杂乱无章的分形,原来是大自然的基本存在形式,无处不在,随处可见。


分形如此广泛地分布在自然界中,却又与千百年来的智者擦肩而过。它的发现,正式揭开了大自然最迷人和动人的奥义之一。

早在两千多年前的古希腊时代,人们最杰出的成就来自数论与几何,特别是欧几里得几何的建立,更使得几何学成为最严格和易于把握的公理化体系。

几何研究的对象是图形。为了研究不同的几何对象,人们倾向于把它们进行归类。从点、线、面到立体,人们的思维逐渐扩展开来。渐渐地,人们意识到区别几何图形的重要分水岭:维度。直线和曲线是一维的图形,平面则是二维的图形,立体则属于三维的空间。


 一切都是那么的直观,历史在平静地流淌。直到有一天,一件匪夷所思的事打破了人们对维度的信念。

1890年,意大利数学家皮亚诺(Piano)构造了一种奇怪的曲线,该曲线自身并不相交,但是它却能通过一个正方形内部所有的点。换句话说,这条曲线就是正方形本身,进而应该拥有和正方形一样的面积!这个怪异的结论让当时的数学家大吃一惊,更让数学界感到深切的不安:如此一来,我们拿什么来区分曲线和平面?这条曲线究竟是一维,还是二维?经典的几何在它面前束手无策。这只被放逐出来的怪兽,正式奏响了分形几何研究的序曲。


皮亚诺曲线(图片来源:Wikipedia)

维度概念的扩展,则得益于德国数学家豪斯多夫(Hausdorff)。他在1919年提出了维度的新定义。该定义为人们成功驱散了笼罩在分形曲线身上的迷雾奠定了基础。

在传统的观念下,一个空间的维数等于决定空间中任何一点位置所需要变量的数目。比如我们生活的空间之所以是三维空间,源自我们需要三个数值:经度、纬度和高度来确定物体在空间中的位置。这样的定义无比符合人们的直观,也因此在数千年间都被奉为圭臬。但是这种定义维度的方式,排除了分数维的可能。


豪斯多夫另辟蹊径,从物体的自相似性来定义维度。自相似性,顾名思义,就是“一个图形的自身可以看成是由许多与自己相似的、大小不一的部分组成的”。比如一条线段是由两个与原线段相似、长度一半的线段接成。一个立方体,则可以看成是由8个大小为自身八分之一的小立方体组成。

简而言之,如果一个图形按照N∶1的比例缩小后。如果原来的图形可以由M个缩小之后的图形拼成的话,这个图形的维数d,就是豪斯多夫维数,定义为  d = ln(M)/ln(N). 在豪斯多夫的定义下,皮亚诺的曲线恰好就是二维!因此它能填满正方形并不奇怪。

皮亚诺曲线就是一条自相似的曲线。它身上揭示了分形的诸多特征:具有自相似性、具有无穷多的层次和细节,可以被无限放大、永远都有结构,最令人惊异的是,它还可以是分数维。比如著名的科赫雪花曲线就是1.26维,谢尔宾斯基三角形则是1.58维。

雪花的分形(图片来源:网络)

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
无限自相似性就是分形的精髓(转载)
什么是分形 | 集智百科
混沌、分形与OKR:组织发展是天意,还是混沌的力量?
《走近混沌》-3-分数维是怎么回事?
【拓扑】英国的海岸线有多长?
分形几何学
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服