打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
死亡起源(十七)

 续上: 死亡起源(十六)

简单讨论过癌症和癌细胞,以及它们复杂的信号通道后,我们将话题拉回到“再生”以及“衰老”。

关于再生,现在的许多研究表明,我们体内虽然没有暂时没有观察到如蝾螈般可以将体细胞逆转为类似胚胎干细胞的状态,但是,我们体内也是有少量成体干细胞的,它对我们组织和器官的修复也起到非常重要的作用。值得一提的是,我们骨髓内的骨髓间充质干细胞(mesenchymalstem cells)在体内或体外特定的诱导条件下,可分化为脂肪、骨、软骨、肌肉、肌腱、韧带、神经、 肝、心肌、内皮等多种组织细胞。另外,在成年人身上,最新的一些研究也逐步发现了原来以为不会再生的组织和器官,包括心肌和大脑的某些神经组织,在心脏干细胞和神经干细胞的作用下,某些条件下的再生能力。我们的大脑海马体每天可以再生700个神经细胞,实验室中,小鼠的心肌也可以被心脏干细胞修复。现在科学研究的一个重要的研究方向,就是寻找如何恢复我们被压制的再生能力。2014年1月30日,日本人小保方晴子在《自然》杂志发表了一篇文章,试图证明成熟体细胞经简单外部刺激即可逆转为干细胞。此论文一度被认为是诺贝尔奖的大热,不过可惜的是,该论文最终被认定为数据造假,落了个被撤销论文的下场。但是,她的失败,并不意味着这个技术就不可能实现,反而,这正是目前最热门的研究之一,因为蝾螈已经告诉我们,这是可能的。而小保方晴子和她的导师当初搞这项研究的逻辑也很简单:因为萝卜可以做到!

另外,虽然我们不能截断人的手指来研究人类的指端再生,不过,从和我们一样,同为哺乳动物的小鼠的趾端再生能力的研究中发现,小鼠趾端再生区域的一些去分化的细胞中,发现了重要的胚胎基因,这揭示它们就是和蝾螈再生类似的芽基细胞[67]。而2013年7月,纽约大学发表在《nature》的另外一篇报道,则揭示,小鼠的趾端再生的信号通道,和蝾螈有惊人的相似之处[65][66]。并且,这些信号通道,在演化上是保守的。

另外,我推测,蝾螈之所以不直接使用干细胞来实施“断肢再生”,而是采用更麻烦的,将体细胞“去分化”成胚胎干细胞的方式进行“断肢再生”,可能是因为断肢伤口部分的体细胞中,含有“断肢再生”所需的关键的位置信息,因为,实施“断肢再生”的细胞是需要知道自己在身体的位置坐标,需要知道是要从哪个部分开始再生的。 或许是由于“断肢再生”的结构复杂,工程量浩大,需要的位置信号特别多,使用“去分化”的体细胞转变成的胚胎干细胞,比直接使用干细胞,要方便些。这是我的猜测。而且,蝾螈的断肢再生,虽然是在模拟胚胎时期肢体发育的过程,但是,却又有所不同。它们在断肢再生过程中,需要有一个“追赶动作”(catchup),也就是说,不管蝾螈是大是小,年龄多大,再生出来的断肢的大小,都要和当时的身体的大小匹配,这在工程上,同样是需要知道大量的三维位置信息的。想想看,我们是如何用AutoCAD建立一个复杂三维图形的?我们是将一个平面一个平面的坐标建立好,然后一层一层(layer),一个截面,一个截面(section)的搭建的。3D打印也是如此,是需要所有的点的坐标信息的。如果把蝾螈再生时的“芽基”(blastema)当作一个3D打印头的话,它就是一层一层的将断肢截面“打印”重构出来的,就如同AutoCAD的3D构图,或者3D打印机的工作原理一样。



 

图72.3D打印原理。3D打印是首先经过三维构图,电脑拥有所有点的位置信息,然后通过3D打印机,一个截面一个截面,逐层(layer)构建三维立体物件的。

 



 

图73.通过上述简单原理,3D打印可以打印出非常复杂的物件。当然,我们的大脑并不是如图示般生成的,呵呵。不过,蝾螈在“断肢再生”过程中,对肢体的重新构建,却和这个图片非常相似

 

我对于人体胚胎发育以及蝾螈再生时,如何精确的控制这些三维坐标很感兴趣,要知道,我们的发育与蝾螈的再生,是可以精确“打印”出如眼球这样的精密三维结构的,这在工程上一定要涉及许多的位置信号,以及位置信号的交换与通信。(眼球的生成要更复杂许多,因为,眼球内部空腔的形成,是通过细胞的有序凋亡形成的,生命本身,就是一个更加高超的工程师)

事实上,根据《自然》杂志2009年7月的报道,蝾螈体内的这些“去分化”的体细胞都能够记住自己来源,然后移动到合适的位置,恢复自己所代表的那种体细胞[42]。那么就有一个非常有趣的推论了:至少,在蝾螈身上,它们的具有“断肢再生”能力的部位的体细胞,是具有自己的位置坐标信息的。而且,很可能,我们人类体内的某些体细胞,也会有这个位置坐标信息!这些位置信息,可能是在胚胎发育的时候被写入细胞的,这太有趣了。而且,很自然的就可以想到,这个位置坐标信息将非常的有用,细胞之间甚至可能就这个位置信息进行通讯,这很可能是实施“断肢再生”,甚至包括各种修复性再生的最关键的一部分。

至于“衰老”这个话题,一如既往的,我们也要从演化的角度上,一步一步的追踪它的演化痕迹。

4.5 不会衰老的脊椎动物

前面我们已经讨论过,在理想状态下,可以“永生”的水螅既然可以“永生”,那么,它自然不会衰老,这是显而易见的。它不会衰老的原因我们已经讨论过了,是因为它有超强的再生能力。不过,除了水螅这样的非常低等的生物不会衰老以外,在远比水螅高等的脊椎动物身上,是否也能观察得到不会衰老的现象呢?

英国《生物学快报》在2011年发表了法国里昂第一大学生物学家YannVoituron团队的一篇文章,报道了一个关于洞螈(Proteus anguinus)的有趣的项目[44][68]。洞螈是蝾螈的近亲,是一种只有大概20–30cm长的小动物。大约从1958年开始,科学家启动了一个项目,观察一群洞螈。当研究项目启动时,这些洞螈年龄大约为10岁。如今50年过去,它们都已60岁了。但研究人员发现,它们根本没有任何衰老的迹象。研究人员估算,洞螈的平均寿命大约为69岁,而上限可能会达到100岁。YannVoituron研究团队最初认为,洞螈的新陈代谢可能极慢。但是经过研究证实,洞螈与其他两栖动物的新陈代谢相似。研究人员还猜测,洞螈是否拥有特殊的技能,用于清理当细胞线粒体将营养转化为能量时所产生的氧自由基等。自由基积聚与衰老有很大关系,但是事实上洞螈抗氧化行为并无特别之处。研究人员说:“在洞螈身上发现了一个矛盾,它的基础代谢率和抗氧化能力,都没有特别之处,而这两点通常都被认为是提高寿命的重要机制。”



 

图74.不会衰老的小动物洞螈。在被观察到可能长达100岁的长寿且不会衰老的同时,它们也被观察到它们的新陈代谢和抗氧化力完全没有什么特别之处

 

上面的这篇报道有几点有趣的信息: 1. 洞螈即便是到了接近它们平均寿命的极限之时,也是不会衰老的。而且部分个体寿命可长达100岁;2. 洞螈的新陈代谢和抗氧化力完全没有什么特别之处,它们的新陈代谢一点也不比同类慢;3.它们是多次繁殖动物。它们每12.5年产卵一次,每次产卵大约35颗;4. 它们生活在一个没有天敌的黑暗环境中,这是一个几乎无压力(stress-free)的生存环境。似乎在无压力的生存环境下,包括洞螈、白蚁的蚁后、血吸虫以及钩虫在内,不管身体大小,它们都倾向于采用长寿的生存策略。

关于脊椎动物的衰老研究,其实在许多年前就开始了。通过对鱼类,两栖类,爬行类,哺乳动物的研究,一般说来,脊椎动物的衰老模型,分为三类:[70][71][72]

1. 快速衰老(rapid senescence)。

2. 逐渐衰老 (gradual senescence)。

3. 可忽略的衰老/不会衰老(Negligible senescence)。

所谓的“可忽略的衰老/不会衰老(Negligiblesenescence)”,指的是生物个体的生殖和生理功能只有很微小的,与年龄相关的改变。并且,观察不到到它们的死亡率,会随着年龄的增长而增加。英文定义:Negligiblesenescence is characterized by attenuated age-related change inreproductive and physiological functions, as well as no observableage-related gradual increase in mortality rate.

对于哺乳动物来说,除了裸鼹鼠(naked mole-rat)外,尚未发现有其他不会衰老(Negligiblesenescence)的哺乳动物。裸鼹鼠是一个只有8-10厘米长,30-35克重的小动物。裸鼹鼠不但被证明非常长寿,它们有远远超过它的同样大小的小鼠9倍的,长达28年的平均寿命,而且它们还被观察到它们是不会衰老的(Negligiblesenescence)。有雌性裸鼹鼠被观察到在30岁时都还可以生殖,并且,十分有趣的是,它们还几乎不得癌症,因为它们从来没有被观察到身上会产生任何自发性的肿瘤[69]。其实,凡是不会衰老的长寿动物,几乎都需要具备对癌症的超强抑制能力。



 

图73. 裸鼹鼠(nakedmole-rat),一种很小,也很丑陋的小动物。它是哺乳动物中唯一被发现不会衰老的动物。而且,同样有趣的是,它们还几乎不得癌症,它们从来没有被观察到身上会产生任何自发性的肿瘤

 

关于爬行动物和两栖类的衰老,到目前为止,关于它们的衰老研究和数据其实不是十分的详细。现在的一些研究表明,许多两栖类或许会显露出一些逐渐的衰老迹象,但是它们的衰老的显著程度是要比哺乳动物低许多的。现在有研究表明,有些青蛙虽然寿命不长,但是它们似乎也是属于不会衰老的动物[45](Negligiblesenescence),不过关于青蛙是否会衰老还存在一些争议,有研究表明青蛙可能也会出现一些虽然不太明显,但是还是与年龄相关的衰退迹象。所以看起来,两栖类和爬行类似乎是处于一个演化过程中,衰老机制开始产生的过渡阶段。而且,我个人认为,基于它们的生活习性,它们的许多,似乎也没有必要演化出这么一套复杂的渐进式的衰老机制。如许多昆虫一般,它们或许只需要在适当的情况下快速自杀就好了,不需要搞一个渐进式的衰老这么麻烦。

我相信一定程度上的“逐渐衰老”(gradualsenescence)模式应该在哺乳动物之前就已经产生了,但是,我个人认为,真正严格意义上的衰老,应该还是出现在哺乳动物身上的——就好象我们人类的衰老模式一样。毕竟,我们好像很少见到老态龙钟的昆虫、青蛙和鱼。

一些爬行动物,比如乌龟或者鳄鱼,它们也被归类于Negligible senescence(不会衰老)类型,它们在成年后,往往便开始变得不会衰老,甚至自然死亡率还会降低。一条70岁的鳄鱼的活力和一条7岁的鳄鱼的活力是一样的。对于鳄鱼来说,限制它们活得更长的,往往是如果体型过大的话,它们可能不能获得足够的食物去喂饱它们自己,它们最后就会被饿死。所以,有人甚至怀疑,鳄鱼或许可以达到某种程度上的“生物学永生”(biologicallyimmortal)。其实,“生物学永生”,即便是某种程度上的“生物学永生”,也是需要解决很多技术问题才能达到的,一个简单的例子,比如牙齿的损耗和龋齿就是个麻烦事,而鳄鱼却是可以终身换牙的。



 

图.751957年在澳大利亚捕获的一条长达8.1米的鳄鱼。如果食物充足的话,鳄鱼似乎是可以无限制的生长的,在不会衰老的同时,有人怀疑它们也可以达到某种程度上的“生物学永生”

 

另外,通过考古发现,一些大型恐龙的寿命也很长,这可以通过分析它们的骨骼的年轮得知。与鳄鱼和乌龟类似的属于不会衰老的,还有鲟鱼(Sturgeon)和一些阿留申平鲉(rougheyerockfish)。在美国俄勒冈州和华盛顿州交界的哥伦比亚河的上游,生活着一大群鲟鱼(Whitesturgeon)。这些鲟鱼都是当年美国大修水电的时候被大坝拦在上游的,它们从此不能回归大海。如今一百多年过去了,哥伦比亚河的下游已经修建了16座大坝,而那些鲟鱼也还好端端的在河上游自在的活着,甚至在百岁高龄还在继续产卵。只是因为河道淤积,产下的卵被淤泥掩埋窒息,不能被孵化而已。记得NationalGeographic 频道还是Discovery频道还专门拍过它们的纪录片。而流经温哥华的FraserRiver,则是鲟鱼和三文鱼的故乡了,每年都有大批钓鱼爱好者来钓鲟鱼,当然,鲟鱼在温哥华是受保护动物,钓鱼仅供娱乐,钓上拍照后,最后都是要放生的,不能保留。不过三文鱼却是可以保留的,前年秋天,我钓了好多三文鱼,批成鱼柳,放在冰柜,吃了好多个月。呵呵



 

图76. 一条被钓上的,约1100磅,大概100岁左右的鲟鱼

 

当我们注意到了上面那些动物的不会衰老之后,再去读本文3.1中提到的Cell 杂志在2013的那篇综述:The Hallmarks ofAging(衰老的标志)中提到的9个衰老的原因,我们就会知道,这些所谓的导致衰老的原因,的确非常值得商榷。在细胞层面上说,它既然可以在亿万年中不断分裂,获得永生,那么,许多与时间相关的自然损耗与破坏,它自然也会有办法修复。它一定已经演化出了这样的修复机制,否则它无法延续至今。而对于多细胞生物来说,多细胞动物的水螅为什么可以“永生”?因为它有大量的干细胞可以修复它自己。虽然鳄鱼和洞螈都是脊椎动物,看起来已经非常复杂和高度组织化了,但是,再复杂的结构,也是由最简单的基本元素构成的。如果可以通过某种机制修复一个个简单的基本单元,那么,进而修复整体,很可能不是什么不可能完成的任务了。

总之,通过观察几乎不会衰老的洞螈、鳄鱼、裸鼹鼠,以及有超强再生能力的蝾螈,它们都向我们揭示了一个有趣的事实:生命自身,在技术上,实现对机体老化的组织和器官的不断自我修复与更新,同时清除各种垃圾,各种DNA复制中的错误累积,各种蛋白质的损伤,以及消灭由此产生的包括癌细胞在内的各种有害细胞,将癌症发病率控制在一个极低的水平等等,也就是说,在理想状态下保持一种“不老的年轻态”,似乎并没有我们想象中的那么困难。

当我们在讨论衰老与死亡的时候,我们往往会把衰老与死亡混为一谈。但是相信我们讨论到这里的时候,知道衰老的三种模型后,我们应该知道,死亡和衰老不是一回是,至少不完全是一回事。讨论衰老问题的时候,我们往往会被那些长寿的动物所吸引,在我们观察到了它们寿命长的同时,也开始注意到了它们中的某些种类的不会衰老(Negligiblesenescence)。我们通过前面几章的分析,相信它们之所以表现出了不会衰老,一个非常重要的原因是它们的生存压力相对较小。它们或者是如鳄鱼般处于生态链的顶端(注:成年鳄鱼不仅仅是处于生态链的顶端,而且还特别耐饥饿,它们可以几个月甚至一年不吃东西,所以生存压力比同处食物链顶端的狮子要小许多);或者如乌龟般,有龟壳可以保护自己;或者如洞螈般,虽然个子只有不到30厘米长,却可以躲在一个没有天敌的黑暗环境中等等。我们前面讨论已经知道了,压力小的情况下,采用延长寿命的策略有可能更符合竞争的需要。

不过,当我们在讨论这些生存压力相对较小的生物的长寿的时候,我们有没有想过,它们的处于高度竞争环境下的同类,那些虽然并不长寿,但是选择了所谓的快速衰老(rapidsenescence)策略的物种,它们是否真的会衰老呢?它们的体内产生了真正意义上的衰老机制吗?它们是否其实直到死亡之前都没有衰老

我个人相信,它们也是不会衰老的。它们的所谓的快速衰老(rapid senescence),应该被描述为快速程序化死亡(rapidprogrammed death),它们只是如许多昆虫一般,其实是在精力还非常旺盛的时候,突然掐断了自己的生命。

本章讲述的这些不会衰老的脊椎动物,一如既往的,在证据上支持了生物的内含“永生”属性。只有具备理想状态下的内含的“永生”能力,或者是理想状态下,某种程度上的内含的“永生”能力,生物才可能做到不会衰老,这是很简单的逻辑。

从它们身上观察到的事实告诉我们,似乎,“长生不老”,或者,某种程度上的“长生不老”,好像并不是一件离奇且遥不可及的事情

待续..........请点击: 死亡起源(十八)

备注与参考文献

[42] Martin Kragl1,3,5,6, Dunja Knapp1,3,5, Eugen Nacu1,3, ShahryarKhattak1,3, Malcolm Maden4, Hans Henning Epperlein2 & Elly M.Tanaka1,3 Cells keep a memory of their tissue origin during axolotllimb regeneration,Nature 460, 60-65 (2 July 2009) |doi:10.1038/nature08152; Received 26 February 2009; Accepted 22 May2009

[44] Yann Voituron, Michelle de Fraipont, Julien Issartel, OlivierGuillaume, Jean Clobert,Extreme lifespan of the human fish (Proteusanguinus): a challenge for ageing mechanisms Biologyletters,Published 12 January 2011. DOI: 10.1098/rsbl.2010.0539

[45] BROCAS J, VERZAR F. The aging of Xenopus laevis, a SouthAfrican frog. Gerontologia. 1961;5:228-40.

[65] Nature, How nails regenerate lostfingertips, 链接出处

[66] Makoto Takeo,Wei Chin Chou, Qi Sun, Wendy Lee,Piul Rabbani,Cynthia Loomis, M. Mark Taketo & Mayumi It, Wnt activation innail epithelium couples nail growth to digit regeneration, Nature499, 228–232 (11 July 2013) doi:10.1038/nature12214

[67] Ken Muneoka, Manjong Han & David M. Gardiner , RegrowingHuman Limbs, Scientific American 298, 56 - 63 (2008)doi:10.1038/scientificamerican0408-56

[68] Wired, Creepy 'Human Fish' Can Live 100 Years, 链接出处

[69] Negligible senescence in the longest living rodent, the nakedmole-rat: insights from a successfully aging species, J CompPhysiol B. 2008 May;178(4):439-45. doi: 10.1007/s00360-007-0237-5.Epub 2008 Jan 8.

[70] Patnaik BK1, Mahapatro N, Jena BS.,Ageing infishes,Gerontology. 1994;40(2-4):113-32.

[71] Kara TC1.,Ageing in amphibians,Gerontology.1994;40(2-4):161-73.

[72] Patnaik BK1.,Ageing in reptiles,Gerontology.1994;40(2-4):200-20.

死亡起源(十八)——哺乳动物的衰老 

48 

续上: 死亡起源(十七)

这一章我们讨论哺乳动物的衰老,以及大脑和智慧的演化对寿命的影响

待到生物演化到哺乳动物阶段以后,与生殖相关的逐步衰老就变得非常普遍了。到目前为止,除了裸鼹鼠外,还没有观察到有其他不会衰老的哺乳动物。

 

哺乳动物的渐进式衰老现象的产生,我相信是与哺乳动物的生活习性相关的。哺乳动物一方面拥有比低等动物相对更发达的大脑,也因此拥有了超越本能的,更加广泛的学习能力和适应能力。也正因为如此,许多哺乳动物并不能象许多低等生物,可以如某些先进导弹的“发射后不管”一般,也来个“生殖后不管”。许多低等生物,甚至是比较高等的爬行动物的后代,因为母体“生殖后不管”的缘故,它们只是靠遗传获得了一些生物本能,然后靠自己去自生自灭,它们的父母大多都不介入其中或者介入不深。相比之下,哺乳动物,通常需要花费许多时间来哺乳,同时教育后代各种生存的能力。和它们相对发达的大脑相对应的,是有许多需要后天获得的知识都不是自动的写在DNA里面了,这些知识都需要父母亲去教会它们。哺乳动物发达的大脑和这种教育方式,大大增加了它们对环境的适应能力,但也增加了上一代的教育成本,同时也因此产生了下一代对上一代的依赖以及对上一代有更长寿命的需要,因此生殖期结束后自杀并不适合绝大部分的哺乳动物。另外,绝大部分的哺乳动物都是多次繁殖动物,那么在演化过程中,哺乳动物如前文提到的北极灯蛾毛虫一般,重新调整自己的生命周期,演化出一个在性成熟后,随年龄逐步衰老的机制,就是一个水到渠成的事情了。

各种哺乳动物随着大脑的发达程度,许多物种都出现了对工具的使用、语言、分工、合作、沟通,社交、甚至娱乐等等需求,这些都对知识和生存技能的传播提出了更高的要求。许多大型群居哺乳动物,老年个体大脑内存储的知识与生存技能可能对群体的生存和竞争有益。所以,基因里面那些可以将老年期延长的开关就会被自然选择所选择出来并被打开,于是它们的老年寿命就相应延长了。有些哺乳动物即便过了生殖期也还有很长的寿命,如此种种,都是对环境和竞争的适应罢了。



 

图77.2013年,BBC的报道,观察到有经验的老年叶猴会帮助年轻的雌性叶猴接生。同样的现象最近也在金丝猴身上被观察到,这被认为可能是灵长类的一种普遍现象。由此可见,许多老年哺乳动物大脑里面积累的知识,对于增加种群的适应性和竞争能力也是有相当大的帮助的

 



 

图78. IrenePepperberg博士和她著名的非洲灰鹦鹉Alex(1976-2007)。大脑只有核桃般大小的Alex被证明可以掌握相当复杂的人类语言,并有一定的数学能力。他可能有大约5岁儿童的智商和2岁儿童的情商。聪明的非洲灰鹦鹉的正常寿命在60岁左右,才31岁便死亡的Alex被认为在死前并没有将它的智力的潜力完全表达出来。可以通过语言和我们进行思想交流的Alex,证明了动物可以拥有相当程度的智商和语言的[73]

 

当我们知道动物的生长发育,乃至寿命都是可调的以后,那么,关于大脑的发展演化,以及智慧的发展和寿命的关系,就会有一个非常有趣的推理和推论了:

1. 大脑的发育和智慧的增长,是可以增加动物对环境的适应能力和竞争力的,这是很简单的道理。

2. 知识与经验的学习与积累是需要时间的,适应能力是和知识经验的积累相对应的,这种适应和竞争力因此是和时间相关的。在这种情况下,适当的延缓衰老,延长寿命,是可以增加竞争力的。那么,适当延缓打开衰老开关和死亡开关的个体,因此会被选择出来。两者之间,也会在自然选择的取舍下,达到一个平衡。

3. 也就是说,生物的生长发育以及寿命,是和大脑的发育和智慧的发展相关的。这是一个非常有趣的推论。

至于绝大多数哺乳动物为什么不能够如某些爬行动物一般,采取不会衰老(Negligiblesenescence)的生存策略,这相信和哺乳动物的演化历史相关。在约2亿年前的三叠纪晚期,早期的哺乳动物与恐龙几乎在同一时期正式出现了。当时君临天下的大小恐龙占据了绝大部分的生态位置,而早期的哺乳动物的体型微不足道,主要靠昆虫等生活在丛林中的小型猎物维生。早期的哺乳动物并不处于生物链的顶端,它们是处于一个生存压力很大的竞争环境的,这些压力往往会导致它们加快世代交替,及时的触发它们的自杀机制以不断适应高压力高变化的环境。所以,现代的科学实验室里,在威胁和压力下变得胸腺缩小,生长缓慢,神经兮兮的幼鼠在我看来,其实不是什么奇怪的事情。它们在告诉我们,在远古的恐龙时代,那个哺乳动物刚刚出现,只能沦为他人食物的年代,只有这样身形变小,神经兮兮,敏感小心并可以将这种敏感与恐惧遗传[46]的个体才能生存。

下图是一个最早期的哺乳动物,吴氏巨颅兽(Hadrocodiumwui)与一枚曲别针的尺寸比较。可以想象,这样的一只动物,在恐龙横行的年代,是一个怎样微不足道的存在。和同时代寿命可能超过200岁的大型恐龙相比,早期的哺乳动物的寿命很可能不会超过现代的一只老鼠,甚至可能只有短短几个月。不过这并不影响它们的后代,可以演化成如弓头鲸一般,拥有超过200年的寿命的巨兽。由此两个极端我们可以看出,即便是哺乳动物,对于寿命这个变量,也可以拥有多么大的调节余地



 

图79. 最早期的哺乳动物吴氏巨颅兽(Hadrocodiumwui),与一枚曲别针比较大小,它的寿命相信不会超过现代的一只老鼠

 



 

图80. 哺乳动物中,寿命可能长达200岁的弓头鲸(Bowheadwhale),通过比较吴氏巨颅兽和弓头鲸,我们可以看出,即便是哺乳动物,对于寿命这个变量,也可以拥有多么大的调节余地

 

另外呢,传统上人们认为的,动物小则新陈代谢会加快,因此寿命短云云,其实是不准确的,这点可以从体型同样很小,新陈代谢也不慢,却非常长寿的洞螈身上得到验证。寿命和体型大小无必然联系,只和压力以及相应的生存策略有关。不过动物因体型小而导致生存压力大倒是很常见。

打个简单的比方,一些不会衰老的大型爬行动物就好比是植物中寿命极长的大型乔木,而早期的哺乳动物就好像是寿命很短的小型灌木甚至一年生草本植物一般,或者如动物界中,寿命极短的昆虫一般。它们对寿命采用不同的策略,只不过是适应环境,各取其道而已。不过,相对发达的大脑、哺乳以及育儿却又延续了哺乳动物的生殖寿命,导致了它们生殖期结束后,即要自杀却又不能象许多低等小型动物一般在生殖后立即自杀,这便是一个矛盾。或许是为了解决这个矛盾,渐进式的衰老机制便在演化过程中被选择出来了。亿万年后,风水轮流转,大型爬行动物的灭绝,让哺乳动物登上了历史舞台。不过,哺乳动物在早期演化出来的这种衰老与死亡机制,也就一并遗传下来了。

 

讨论到这里,有一个小细节其实可以讨论一下的。上一章我们讨论过了鳄鱼的牙齿。因为,若要象鳄鱼那般不会衰老,是需要满足许多技术细节的。比如牙齿的磨损就是一个大问题,而鳄鱼是可以终身换牙齿的。和鳄鱼相比,大部的哺乳动物只能更换一次牙齿,或者不换牙。其实,更换一次牙齿,和终生换牙,在技术上,区别并不是很大。鳄鱼之所以可以终身换牙,是因为鳄鱼牙板上有干细胞,这些干细胞可以生成新的牙齿。而通过从猪的身上的研究表明,成年猪在换牙之后,它们的牙板发生了细胞凋亡。而我们知道,细胞的凋亡,是程序化的。由此可见,许多哺乳动物其实只是在第二次换牙后,关闭了这个开关而已,并非我们在技术上做不到。

那么哺乳动物的体内究竟发生了什么,导致了哺乳动物的衰老呢?哺乳动物体内的衰老机制又是如何产生的呢?关于哺乳动物,包括我们体内的衰老和死亡机制,科学界还不十分清楚,有时甚至还很混乱,经常时不时的有这样或者那样的发现说,发现了某个“长寿基因”,找到了“青春的源泉了”,随后又被更新的发现所推翻。不过,我们或许也可以从一些极端现象中来寻找一些端倪。

其实关于衰老和死亡的起源,通过前面漫长的讨论,我们已经基本了解了,我在下面再简单重新理顺一下:

首先,我们需要注意到,哺乳动物体内是有“永生”的细胞的。首先我们的生殖细胞便是永生的,如果没有生殖细胞的永生,我们就不可能传宗接代。它们可以无限制的分裂,并没有如体细胞般的有分裂次数限制,也没有所谓的端粒长度等等的限制,也因此没有所谓寿命的限制。其次,哺乳动物体内的癌细胞因为某种故障所致,也变成了“永生”的,它也可以无限制的分裂。另外呢,哺乳动物体内是有成体干细胞的,这些干细胞参与了受损器官的修复以及血液和皮肤的再生,它们似乎也是没有分裂限制的。老鼠骨髓内部由造血干细胞分化出的第一代造血祖细胞也可以再生很长时间——虽然没有干细胞那么长[47]。我们现在也知道了,体细胞和胚胎干细胞之间,其实差别不大,体细胞是可以被逆诱导成可以“永生”的多能干细胞的,它们本质上是同一个东西——就好比蜜蜂的蜂后于工蜂是同一个东西一样。所有的这些,都在告诉我们,曾经存在于水螅体内的“永生”的本能,其实都还存在于我们的细胞和整个系统之中,之所以没有表现出来,只是因为它们被压制住了。

其次,我们应该注意到,哺乳动物的衰老,从来就是与生殖相关的,而不是与年龄相关。所以我们可以观察到一个15岁的人类没有衰老,而一只15岁的狗已经严重衰老了。既然我们已经知道,理想状态下的“永生”才是生命的基本属性,细胞总是可以通过各种手段,获得相当程度上的“永生”。而且,我们也知道,寿命也对于生命来说,也是一个可以调整的变量。我们的整个机体,也需要在必要的情况下,在环境改变后,在各种需要延长或者缩短寿命的情况下,改变自己的寿命或者衰老速度,以此来适应自然选择。

想想看,为什么本文2.1的思想实验中描述的那团细菌是“永生”的呢?答案很简单:因为没有一个信使,在适当的时间,通知那些细胞群说:“时间到了,你们当中的某些该自杀了!”它们的系统太简单了,还没有演化出这套复杂通讯机制。所以,如果要做到上述这一点,在我们的身体内部,这个衰老机制就必须要拥有一个通讯机制,它可以通过这个机制来和全身的细胞通讯,通知它们在适当的时刻做出适当的反应。当然,这种应变机制还要涉及到包括表观遗传等的各种机制的参与。

那么现在我们可以查找一下,我们已知的可以和全身细胞通讯的机制有哪些呢?按照这个要求来寻找,我们很快可以找到符合这个条件的内分泌系统、以及由内分泌系统所产生的化学物质——激素和各种信号分子。激素是高度分化的内分泌细胞合成并直接分泌入血的化学信息物质,它的分泌量非常非常的小,但是却效果非常明显,它通过调节各种组织细胞的代谢活动来影响人体的生理活动。

我们在前面已经讨论过了,激素是一种信使,是身体各部分通讯的媒介,是它们用来和细胞通讯的工具。大多数激素通过与特定的胞内或细胞膜表面的“受体”(Receptor),结合来启动特定的细胞作出应答。现代的研究告诉我们,大脑是我们内分泌系统的主腺。它一方面通过遍布全身的神经系统来调控我们的各种生理机能,另一方面还通过分泌各种脑激素来调控内分泌系统分泌各种激素,从而达到直接或者间接与人体各个组织器官以及细胞通讯的能力。另外呢,激素并不仅仅是由内分泌系统产生的,神经系统和免疫系统也会产生一些细胞因子(细胞激素),并反过来影响内分泌系统和其他系统,形成一种反馈循环。这三大系统的纠葛与相互作用,构成了一个非常复杂的内分泌——神经——免疫系统网络。



 

图81. 压力与内分泌——神经——免疫系统网络的复杂关系

 

而根据我们前面的分析,“广义的压力”是造成衰老和死亡的一个关键因素,也是生物调整自己寿命的一个主要参考参数。而我们知道,我们的大脑是“广义压力”的汇集点,所有的压力最终都会通过神经系统或者其他渠道汇集到大脑。因此,由大脑来反馈和适应压力,并调控生命周期以及各阶段寿命的长短,并通过各种表观遗传来应对压力,做一些后天改变,并且对改变有选择性的遗传或者部分遗传,将是一件非常自然的事情。这也反过来解释了为什么大脑会是我们内分泌系统的主腺体。大脑还可以通过内分泌系统去调控我们的免疫系统以及我们的生长、发育、衰老等等全系列过程。总之,我们的压力汇聚点——大脑控制了我们的神经、内分泌以及免疫这三个与我们衰老和死亡密切相关的系统。所以,如果大脑的内分泌出现了故障,我们往往可以观察到许多与生长发育相关的故障:比如,侏儒症,巨人症等等。

另外,或许是为了确保这套系统能够杀死我们,我们系统中可能还有一些自毁装置。即便在控制系统也就是我们整个控制的中枢——大脑的某些功能失效的时候,也可以自动诱发我们身体的一些关键部位的组织细胞自杀(凋亡),导致我们整个系统自毁。在讨论癌症的时候我们已经提到了,许多种类的细胞的生长都是需要细胞因子(一种信号分子)的刺激的,如骨髓细胞的生长就需要相关的细胞因子,体外培养的骨髓细胞如果没有得到细胞因子,也就是说失去了那些持续通知它们,告诉它们让它们继续活着的信号,它们就会立刻开始进入凋亡程序,也就是主动自杀。这其实有点象我们电路设计的一个常用思路:我们会利用一个继电器的“常开电路”来控制一个电路,这个电路的运转是需要一个控制信号的,这个控制信号就是维持对继电器的通电,只有当继电器通电的情况下,这个电路才能维持运转,一旦这个继电器失去维持它吸合的信号电流的时候,这个继电器就会断开,那么整个电路系统也就停止了。

我们的基因里面也有许多各种各样的细胞生长促进和抑制基因,前面已经讨论过了,在癌症研究里面,许多都被认为与癌症相关,被称为原癌基因和肿瘤抑制基因。它们若突变,往往会引起各种问题。其实这些基因存在的更主要的原因应该是,它们中的某些,是用来进行生长发育以及寿命调节的,目的之一是让我们缩短或者延长寿命的,癌症其实只是一个副产品。它们如何工作,以及工作的结果如何,就看我们的系统如何调配这些控制因子了。

现代关于免疫学的研究告诉我们,我们的免疫系统,神经系统(包括神经内分泌),内分泌系统这三大系统是高度协调统一的。内分泌系统产生各种激素,也就是信号分子与各个系统通信,反过来,免疫系统和神经系统也会产生信号分子,影响内分泌系统。这三大系统通过“信息分子——受体”这样的方式,互相联系,互相通讯,互相影响。而压力这个参数,则处在三大系统的中间位置,同时对三大系统施加影响。

广义的压力其实代表的是周边环境和自然选择对我们的的影响,为了适应自然和竞争的需要,围绕这压力这个中心,基于我们拥有内含的理性状态下“永生”能力,或者某种程度上的“永生”能力,生物需要在“永生”的基础上,将自身的生长、发育、衰老、死亡、以及寿命等等,变成可调的。这种可调能力,也成为了演化和竞争中的一个非常重要适应手段,生物时不时的调整和改变这个变量,这对于它们对自然选择和环境的适应,起到了非常重要的作用。

与此同时,随着各种哺乳动物的智慧的发展,大脑和智慧以及经验的积累,在提高竞争力的同时(这意味着竞争的压力会降低),也会在自然选择的作用下,影响哺乳动物的寿命。

总之,因为某种程度上的“永生”并不困难,所以,寿命,包括细胞和生物整体的寿命,因此可以成为演化和竞争的一个可调节的手段,生长发育因此也是可调的,死亡也因此是一种程序化行为,衰老也是程序化行为,甚至机体对癌症的抑制,也应该是可调的,过了一定的年龄以后,我们机体对癌症的抑制肯定是“故意放水”了的。我们连衰老和死亡都是程序控制下的主动行为,何况对癌症的抑制乎?………

待续……….

备注与参考文献

[46] Nature, Fearful memories haunt mouse descendants, Geneticimprint from traumatic experiences carries through at least twogenerations 链接出处

[47] Busch K1, Klapproth K1, Barile M2, Flossdorf M2, Holland-LetzT3, Schlenner SM4, Reth M5, H?fer T2, Rodewald HR1. Fundamentalproperties of unperturbed haematopoiesis from stem cells in vivo.Nature. 2015 Feb 26;518(7540):542-6. doi: 10.1038/nature14242. Epub2015 Feb 11.

[73]参考维基百科词条:Alex (parrot),https://en.wikipedia.org/wiki/Alex_(parrot)

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
死亡起源 The Origin of Death (下)
死亡起源(十五)
【养鹿】造福人类:揭开鹿茸再生之谜
我们离科幻片中的「再生超能力」还有多远? (上)
衰老与寿命的演化
那些「永生」的生物
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服