类型:
1、火车过桥:
(1)、火车+有长度的物体
(2)、火车+无长度的物体
S=
2、火车+人
(1)、火车+迎面行走的人,相当于相遇问题
(2)、火车+同向行走的人,相当于追及问题
3、火车+车
(1)、错车问题,相当于相遇问题
S=两车车长之和,解法:S=(快车速度+慢车速度)×错车时间
(2)、超车问题:相当于追及问题
S=两车车长之和,解法:S=(快车速度-慢车速度)×错车时间
4、火车上人看车从身边经过
(1)、看见对车从身边经过,相当于相遇问题
S=对车车长,
(2)、看见后车从身边经过(相当于追及问题)
S=后车车长,解法:S=两车速度之差×时间
三、注意事项:
1、画图
2、分清方向和位置
3、单位统一
例1、
例2、
例3、一列火车身长400米,铁路旁边的电线杆间隔40米,这列火车从车头到达第一根电线杆到车尾离开第51根电线杆用了2分钟,这列火车的车速
2400÷2=1200米/分
例4、慢车车长为125米,车速为17米/秒,快车车长140米,车速为22米/秒,慢车在前面行驶,快车在后面追上到完全超过需要多少时间?
例5、小明坐在行驶的车上,从窗外看到迎面开来的货车经过用了6秒,已知货车长168米;后来又从窗外看到列车通过一座180米的桥用了12秒,货车的速度是多少?
分析:前半句话,是相遇问题,相遇路程为货车车长,168÷6=28米/秒,即为列车和货车的速度和。
180÷12=15米/秒,即为火车的车速,那货车的车速就为28-15=13米/秒
例6、解放军某部出动80辆车参加工地劳动,在途中要经过一个长120米的隧道,如果每辆车长10米,相邻两车间隔为20米,那么,车队以每分钟500米的速度通过隧道要多长时间
例7、(部队过桥)一支队伍长1200米,在行军。在队尾的通讯员用了6分钟跑到队最前的营长联系,为了回到队尾,他在追上营长的地方等了24分钟后,如果他是跑出队尾,只要多长时间?
S=队伍长=1200米,那么,队伍的速度就是:1200÷24=50米/分。所以通讯员的速度就是:200+50=250米/秒。如果他跑回队尾,实质是相遇问题,S=队伍长=1200米,时间就可以求出来了,相遇时间=1200÷(250+50)=4分钟。
联系客服