打开APP
userphoto
未登录

开通VIP,畅享免费电子书等14项超值服

开通VIP
一文看懂锂离子电池电解液机理与发展趋势

电解液作为锂离子电池的血液,承担着运输锂离子的重任,它质量的好坏,将直接影响锂离子电池的性能,同时也在一定程度上影响锂离子电池的安安全性,本文将通过电解液的基础知识、电解液添加剂的机理、电解液的发展趋势等几个方面对电解液进行一个简单的分析和总结。

选择电解液的一般原则如下:

(1)电化学稳定性好,与正极材料、负极材料、隔膜、集流体、粘结剂等不发生反应;

(2)离子电导新好,介电常数高,粘度低,离子迁移的阻力小;

(3)在很宽的温度范围内保持液态,一般温度范围为-40℃~70℃,适用于改善电池的高低温特性;

(4)能最佳程度促进电极可逆反应的进行,即具有较高的循环效率;

(5)环境友好,最好无毒或者低毒性。

常见溶剂的物理性能如上表所示,根据电解液的选择原则以及所在的体系中选择合适的溶剂,基本的溶剂有环状、链状以及羧酸酯系列。

目前常用的锂盐为LiPF6,对水分很敏感,一旦接触水分就会发生反应,造成产气,电池鼓胀,循环衰减严重等问题, 20~60℃温度范围内,在3种混合溶剂中LiPF6与水的反应速率常数k大小为:EC DMC<EC DEC<EC DEC DMC(如表1);LiPF6与水的反应速率随温度升高而大大加快,40℃下的反应速率常数是20℃时的3~4倍,60℃时增大到20℃时的8~12倍,所以在配置电解液的时候一定要控制环境的温湿度,目前量产所使用的电解液一般控制水分含量低于20ppm。

一些常用的添加剂如上表所示,用较少的量达到改善某一方面的性能。

(1)成膜添加剂:VC应用的比较广泛,其主要机理为碳负极表面发生自由基聚合反应,生成聚烷基碳酸锂化合物,从而有效抑制溶剂分子的共嵌入反应;PS、ES、DES、DMS等物质,其主要机理为还原分解形成SEI膜的主要成分是无机盐Li2S、Li2SO3 或Li2SO4 和有机盐ROSO2Li,大大增强SEI膜的稳定性;

(2)安全类添加剂:阻燃添加剂,降低电解液放热值以及自热率,主要是含P或F的有机化合物,如有机磷化物、有机氟化物、以及氟代烷基磷酸酯等。放过充添加剂,其主要机理为氧化还原梭反应(二茂铁)以及电聚合反应(联苯、环己基苯);

(3)多功能添加剂:除水、导电、成膜等综合作用,酰胺类添加剂,与水形成氢键,同时含有孤对电子,起到稳定SEI膜的作用。

添加成膜添加剂石墨负极循环后性能对比,可以明显的看出,再添加成膜添加剂后负极材料在循环过好表面光滑了许多,而没有添加成膜添加剂的负极则粗糙不少,循环也衰减的较快。

再添加了阻燃添加剂后,明显看出再添加一定量后电解液已经不可燃了,给高能量密度的电池带来一定的安全保障。

下面将介绍两款新型添加剂对电池性能的影响:

随着镍含量以及充电上限电压的提高,正极材料对电解液的要求也越来越高,高镍材料在循环过程中会产生NiO,进而吸水、产气造成电池失效。

一些聚磷酸酯类可以显著的改善高镍材料的性能。

LiPO2F2可在正负极表面成膜,显著改善高镍以及高电压材料的性能,现在已经作为普遍的添加剂得到了广泛的应用。

随着能量密度的提升,高电压、高镍正极材料,以及硅碳负极的广泛应用,越来越多的功能性添加剂将会被使用。

根据专家组给出的技术路线可以看出,就目前而言,需要进行高纯度、高稳定性电解液的开发,后续将逐渐根据材料的发展进行高电压、复合锂盐以及全固态电解质的开发,就中国目前电解液市场而言,准入门槛并不高,但是隐形的技术是有壁垒的,而随着关键原材料的国产化,目前电解液的成本也随之进一步降低,日韩企业也开始将制造工厂往国内转移,相信在不久的将来,中国的电解液将会走出国门,走向世界。

参考文献:

1.动力电池技术路线图

2.高能量密度动力电池开发报告

本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报
打开APP,阅读全文并永久保存 查看更多类似文章
猜你喜欢
类似文章
【热】打开小程序,算一算2024你的财运
锂离子电池电解液添加剂FEC和VC的成膜机理分析
VC添加剂在锂离子电池中的作用机理分析
【干货】锂离子电池产气成分及原理分析
新宙邦巨献:高温高压电解液添加剂设计与机理研究
锂离子电池的失效分析与故障机理
[道赢·深度] | 欧阳明高:锂离子电池全生命周期衰降机理及应对方法
更多类似文章 >>
生活服务
热点新闻
分享 收藏 导长图 关注 下载文章
绑定账号成功
后续可登录账号畅享VIP特权!
如果VIP功能使用有故障,
可点击这里联系客服!

联系客服